Основы построения телекоммуникационных систем и сетей

Глава 5.  Цифровые иерархии и транспортные сети

назад | вперёд  

5.1. Плезиохронная цифровая иерархия

Потребности людей в общении, в обмене различного рода информацией очень индивидуальны. Изучение информационных потоков позволяет выяснить, сколько требуется для общения людей каналов связи. Для различных населенных пунктов это число разное. Например, в таком крупном городе, как Москва, междугородная телефонная станция вынуждена предоставлять своим абонентам несколько десятков тысяч только телефонных каналов с разными городами, а, кроме того, есть запросы на междугородные каналы для телеграфа, видиотелефона, ЭВМ и т.п. В то же время в небольшом районном центре оказалось достаточным иметь десятка два-три телефонных каналов, да с десяток телеграфных.

Цифровые потоки – это последовательности 0 и 1, передаваемых по линии связи. Нули и единицы могут нести информацию о речи, тексте, изображении и т.д. При этом скорости потоков будут, естественно, отличаться: для текста – 50...100 бит/с, для компьютерных данных – 200 бит/с и выше, для речи – 64 кбит/с, для подвижной «картинки» – более 100 Мбит/с.

Как же «строить» цифровые системы передачи? Сколько цифровых потоков можно объединять и направлять в одну линию связи – провод в электрическом кабеле, ствол в радиорелейной или спутниковой линиях, волоконный световод в оптическом кабеле? Можно ли стандартизировать скорости передачи?

Начнем с того, что узлы различных систем передачи должны быть однотипными, или унифицированными.

Цифровые системы передачи создают во всем мире; телекоммуникации  не знают государственных границ. Каждая страна должна выпускать аппаратуру, согласовывая ее со стандартами, принятыми в других странах. Государства должны договориться, на каких принципах строить аппаратуру. С этой целью создан межгосударственный орган – Международный союз электросвязи (МСЭ). Он рекомендует строить цифровые системы передачи по иерархическому принципу.

Примером иерархического построения системы является календарь. Иерархия календаря состоит в следующем. За единицу измерения выбраны сутки. Семь суток объединяются в неделю. Из четырех или четырех с половиной недель образуется месяц. Три месяца составляют квартал. Четыре квартала – это год. Годы складываются в десятилетия и века, а века – в тысячелетия. При необходимости эту иерархию можно продолжить и «вниз» от суток: сутки состоят из 24 ч, час – из 60 мин и т.д.

Иерархия, рекомендованная для цифровых систем передачи, чем-то похожа на иерархию календаря. Прежде всего, необходимо было выбрать некоторую единицу измерения – «элементарную» скорость цифрового потока, единую для всех стран и предприятий, выпускающих аппаратуру систем передачи, и позволяющую измерять скорость суммарных цифровых потоков. Такая «единичная» скорость во всем мире – скорость передачи цифровой речи, равная 64 кбит/с. Выбор этой величины в качестве единицы объединения цифровых потоков связан, скорее, с традициями, нежели с какими-то другими соображениями.

Канал, в котором биты передаются со скоростью 64 000 цифр/с, получил название основного цифрового канала. Возможности любой цифровой системы передачи оцениваются числом организованных с ее помощью именно таких стандартных каналов.

На какое же число каналов рассчитаны современные системы передачи?

Чем выше ступень иерархии, тем больше организуется каналов и тем мощнее цифровой поток или, другими словами, тем выше его скорость. К системам передачи, стоящим в самом низу иерархической лестницы, относится аппаратура ИКМ-30. У подобных систем передачи сравнительно невысокая скорость цифрового потока (около 2 Мбит/с), что делает их пригодными для организации связи между АТС по обычным городским и сельским кабелям связи, образующим довольно обширную сеть подземных магистралей. Объединение цифровых потоков в этих системах осуществляется по принципу «чередования кодовых комбинаций». Введение в них синхросигнала и различных служебных символов потребовало дополнительных каналов и привело к тому, что скорость объединенного цифрового потока стала больше суммы скоростей объединяемых потоков.

Скорость передачи по междугородным симметричным кабелям связи может быть увеличена до 8 Мбит/с. По каждой паре этих кабелей могут работать четыре системы ИКМ-30 или пять систем ИКМ-24. Чтобы обеспечить одновременную работу этих систем, нужно объединять их выходные потоки. Аппаратура, осуществляющая это объединение, называется по числу образованных каналов – ИКМ-120. Скорость потока на выходе этой аппаратуры 8,448 Мбит/с.

Более мощные потоки цифровой информации можно передать по парам коаксиальных кабелей, волокнам оптических кабелей, стволам спутниковых и радиорелейных линий связи. Для образования высокоскоростных потоков объединяют цифровые потоки четырех систем ИКМ-120. В результате скорость передачи в линии возрастает до 34,368 Мбит/с. Число каналов в новой системе равно 480, поэтому она получила название ИКМ-480.

Поступая далее аналогичным образом, получаем при слиянии четырех потоков систем передачи ИКМ-480 суммарный цифровой поток со скоростью 139,264 Мбит/с. Это уже аппаратура ИКМ-1920.

Только с помощью одной коаксиальной пары или одного оптического волокна можно связать друг с другом почти 2000 телефонных аппаратов в одном городе с таким же количеством аппаратов в другом городе. А ведь в кабелях не одна такая пара и не одно такое волокно. Но на этом иерархия цифровых систем передачи не заканчивается. Можно продолжать укрупнять потоки и дальше.

Принципы синхронизации остаются неизменными для систем передачи всех ступеней иерархии, сколько бы их не было: точно так же выделяются из цифрового потока тактовые импульсы и точно так же для обеспечения синхронной (а, если точнее, синфазной) работы мультиплексоров и демультиплексоров посылаются в линию комбинации импульсов цикловой синхронизации. Правда, некоторые отличия все же есть.

Дело в том, что в системах передачи, начиная со второй ступени иерархии (это аппаратура ИКМ-120, ИКМ-480, ИКМ-1920 и т.д.), объединение потоков выполняется по принципу чередования битов. Таких потоков – четыре, и скорость каждого из них 2,048 Мбит/с. Четыре «двери» мультиплексора передающей станции поочередно открываются и пропускают в линию по одному биту из каждого цифрового потока. Разумеется, что они должны успеть это сделать за время, пока данные биты не успели смениться следующими. Затем все снова повторяется.

Понятно, что объединение потоков становится возможным только за счет укорочения в 4 раза длительности передаваемых импульсов, т.е. фактически за счет уменьшения в 4 раза времени передачи каждого из них. Но как же в этом случае ввести в цифровой поток сигнал цикловой синхронизации, ведь места-то для него нет? Вероятно, путь только один – укоротить информационные импульсы еще чуть-чуть. Пусть они немного потеснятся, тогда в цикле передачи появятся «пустые» временные интервалы, в которые и можно будет вставлять синхросигнал.

Вот как это делается практически. Приходящие на вход системы передачи биты из четырех информационных потоков записываются в ячейки памяти ЗУ, а затем считываются с них и направляются в линию. Поскольку шины записи и считывания ЗУ независимы друг от друга, становится возможным записывать биты с одной скоростью, а считывать – с другой, чуть чаще. «Прочитали» содержимое ячеек памяти быстрее – вот и появилась во времени «дырка» для вставки синхроимпульсов. Если импульсы считывания не «отстают» и не «убегают вперед», а «идут» весьма стабильно, то в каждом потоке регулярно появляются «пустые» интервалы. В системе передачи ИКМ-120 таким «пустым» интервалом, не несущим никакой информации, является во всех потоках каждый 33-й интервал. При объединении потоков в линию поочередно посылаются импульсы каждого из них, а так как на указанных «пустых» интервалах ни в одном из потоков никаких информационных импульсов нет, то в общем потоке периодически образуются «дырки» шириной в четыре интервала. В них-то и «вставляют» синхроимпульсы, а так же другую служебную информацию. Напомним, что строгая периодичность синхросигнала – это одно из важнейших свойств, используемое для его распознавания.

Совсем иная картина будет наблюдаться, если местный генератор окажется не очень стабильным. В этом случае главные «часы» цифровой системы передачи (тактовые импульсы) могут «отставать» или «убегать вперед» по сравнению с их нормальным «ходом». В свою очередь, это будет вызывать смещение во времени «пустых» интервалов в каждом цикле передачи, и, значит, нарушится строгая периодичность их повторения. На каком-то этапе может произойти полный сбой в работе системы синхронизации и, как следствие, всей аппаратуры в целом. Чтобы такого не случилось, местные «часы» (тактовые импульсы) нужно систематически «подводить». Подобная процедура реализована практически во всех современных системах передачи высших (начиная со второй) иерархий и называется «согласованием», а иногда «выравниванием», скоростей цифровых потоков, или скоростей следования тактовых импульсов записи и считывания.

Как же все происходит? Специальное устройство из нескольких микросхем (так сказать, «группа контроля») следит за взаимным положением импульсов записи и считывания. Пусть расстояние между соседними парами этих импульсов постепенно начинает уменьшаться. Значит, местный генератор ускорил свой бег, и импульсы считывания начали следовать быстрее. Как только контролируемый интервал уменьшится до критической величины, наш строгий контролер подаст сигнал тревоги: «пустой» интервал появился раньше времени. Поскольку ему еще не время появляться, другое устройство (тоже группа микросхем) введет в этот пустой интервал ложный импульс, не несущий никакой информации. Так достигается согласование, или выравнивание, скоростей записи и считывания цифровых потоков, которое в данном случае называется положительным.

Почему же обязательно нужно вставлять ложный импульс, не лучше ли взять да и притормозить чуть-чуть генератор тактовых импульсов? Нет, этого делать нельзя. Дело в том, что тактовые импульсы разных цифровых потоков могут, в принципе, и не совпадать точно друг с другом, а генератор – один на всю систему передачи. Представим, что будет, если начать его непрерывно «дергать», подстраивая то под один цифровой поток, то под другой. Тут единственный путь – вставлять по мере необходимости в каждый из потоков ложные импульсы.

После того, как в цифровой поток введен ложный импульс, нужно передать на приемную станцию команду: «Внимание! Произошло согласование скоростей». Она служит сигналом для ликвидации на приеме ложного импульса. Такой командой может служить, например, посылка по служебному каналу единичного бита. В качестве служебного канала можно договориться использовать один из «законных» пустых интервалов, не занятый синхроимпульсом. Итак, если на приемной стороне в служебном интервале объединенного цифрового потока появляется 1, это означает, что из выделенного низкоскоростного потока нужно исключить очередной импульс – он ложный. А пока по служебному каналу поступают нули, исключать импульсы не надо - они все информационные.

Посылать по линии команду, состоящую всего из одного бита, крайне неосторожно. Под воздействием помех 1 может превратиться в 0, а 0 в 1, и тогда случится непоправимое – информация будет декодирована неправильно. Поэтому для большей надежности команду согласования скоростей многократно дублируют, например, посылая ее 3 раза. В данном случае она будет иметь вид 111. Теперь, если в ней после воздействия помех останется только одна 1, команда все равно будет воспринята. Комбинация же 000 говорит о том, что согласование скоростей не производилось и пока все идет нормально.

До сих пор речь шла о том, что местный генератор может только «убежать вперед». Но с таким же успехом он может и «отставать», вырабатывая импульсы считывания реже, чем необходимо. Может случиться так, что в цифровом потоке уже должен появиться «пустой» интервал, а тактовые импульсы из-за замедленной их скорости до сих пор еще не считали из ЗУ предшествующий ему информационный импульс. Что делать в таком случае? Придется исключить из цифрового потока этот «неудачливый» бит и предоставить временной интервал «по расписанию» для передачи очередной порции служебной информации (скажем, синхроимпульса). Только так можно согласовать, или выровнять, скорости тактовых импульсов записи и считывания. Такое согласование получило название отрицательного.

Если местные «часы» системы передачи (тактовые импульсы) подводятся и в ту, и в другую сторону, то одной команды: «Внимание! Произошло согласование скоростей» будет мало. Нужно еще сообщить на приемную станцию, какое согласование произошло: положительное или отрицательное, вставлен ложный импульс или исключен информационный. Для этой цели вводят команду «Вид согласования», посылая по другому служебному каналу 1 при положительном согласовании и 0 при отрицательном. Для надежности ее также повторяют 3 раза. Комбинация 111 во втором служебном канале (организованном также за счет части «пустых» интервалов) будет воспринята как сигнал о том, что в цифровой поток вставлен ложный импульс, а комбинация 000 - что из потока «вырезан» информационный бит. Устройства распознания команд выполнены таким образом, что они сработают даже в том случае, когда в командах «выживут» всего по одному биту, а остальные «погибнут» в борьбе с помехами.

Так что же, исключенный на передаче информационный бит пропадет совсем? Нет. Его посылают вдогонку по третьему служебному каналу, причем для верности тоже повторяют 3 раза. Итак, приемник цифровой системы передачи по первой команде (комбинация 111) узнает, что произошло согласование, по второй команде поймет, что нужно или ликвидировать ложный импульс (комбинация 111), или восстановить пропущенный информационный (комбинация 000), а по информации, взятой из третьего служебного канала, определит, какой бит пропущен – 1 (комбинация 111) или 0 (комбинация 000).

Объединение потоков с выравниванием скоростей получило название плезиохронного (почти синхронного), а существующая иерархия скоростей передачи цифровых потоков, а, значит, и систем передачи типа ИКМ – плезиохронной цифровой иерархией (в англоязычном написании Plesiohronous Digital Hierarchy – PDH).

Плезиохронная цифровая иерархия была разработана в начале 80-х годов прошлого столетия. На системы передачи данной иерархии возлагались большие надежды. Однако она оказалась очень негибкой: чтобы вводить в цифровой поток высокоскоростной или выводить из него низкоскоростные потоки, необходимо полностью «расшивать», а затем снова «сшивать» высокоскоростной поток. Это требует установки большого числа мультиплексоров и демультиплексоров. Ясно, что делать эту операцию часто весьма дорого.

Недостатком систем передачи плезиохронной цифровой иерархии является также то, что при нарушении синхронизации группового сигнала восстановление синхронизации первичных цифровых потоков происходит многоступенчатым путем, а это занимает довольно много времени. В настоящее время среди систем передачи РDН «выживают» только системы первого уровня иерархии, снабженные новой аппаратурой так называемого гибкого мультиплексирования, которая обеспечивает кроссовые соединения каналов 64 кбит/с; выделение и ввод отдельных каналов 64 кбит/с в любом наборе; пользовательские интерфейсы от двухпроводных окончаний для телефона до окончаний базового доступа в цифровую сеть с интеграцией услуг; видео­конференцсвязь и многое другое. Можно сказать, что гибкие мультиплексоры немного продлили жизнь РDН систем.

Но самое главное, что заставило уже в середине 80-х годов XX в. искать новые подходы к построению цифровых иерархий систем передачи, это почти полное отсутствие возможностей автоматически контролировать состояние сети связи и управлять ею. А без этого создать надежную сеть связи с высоким качеством обслуживания практически невозможно. Все эти факторы и побудили разработать еще одну цифровую иерархию.

5.2. Синхронная цифровая иерархия

Синхронные транспортные модули. Новая цифровая иерархия была задумана как скоростная информационная автострада для транспортирования цифровых потоков с разными скоростями. В этой иерархии объединяются и разъединяются потоки со скоростями 155,520 Мбит/с и выше. Поскольку способ объединения потоков был выбран синхронный, то данная иерархия получила название синхронной цифровой иерархии (Synchronous Digital Hierarchy – SDH).

Для транспортирования цифрового потока со скоростью 155 Мбит/с создается синхронный транспортный модуль (Synchronous Transport Module) STM-1. Модуль представляет собой фрейм (рамку) 9 • 270 = 2430 байт. Кроме передаваемой информации (называемой в литературе полезной нагрузкой), он содержит в 4-й строке указатель (Pointer, PTR), определяющий начало записи полезной нагрузки.

Чтобы определить маршрут транспортного модуля, в левой части рамки записывается секционный заголовок (Section Over Head – SOH). Нижние 5 • 9 = 45 байтов (после указателя) отвечают за доставку информации в то место сети, к тому мультиплексору, где этот транспортный модуль будет переформировываться. Данная часть заголовка так и называется: секционный заголовок мультиплексора (MSOH). Верхние 3 • 9 = 27 байтов (до указателя) представляют собой секционный заголовок регенератора (RSOH), где будут осуществляться восстановление потока, «поврежденного» помехами, и исправление ошибок в нем.

Один цикл передачи включает в себя считывание в линию такой прямоугольной таблицы. Порядок передачи байтов - слева направо, сверху вниз (так же, как при чтении текста на странице). Продолжительность цикла передачи STM-1 составляет 125 мкс, т.е. он повторяется с частотой 8 кГц. Каждая клеточка соответствует скорости передачи 8 бит • 8 кГц = 64 кбит/с. Значит, если тратить на передачу в линию каждой прямоугольной рамки 125 мкс, то за секунду в линию будет передано 9 • 270 • 64 Кбит/с = 155520 Кбит/с, т.е. 155 Мбит/с.

Таблица 5.1. Синхронная цифровая иерархия
Уровень иерархии Тип синхронного транспортного модуля Скорость передачи, Мбит/с
1 STM-1 155,250
2 STM-4 622,080
3 STM-16 2488,320
4 STM-64 9953,280

 

Для создания более мощных цифровых потоков в SDH-системах формируется следующая скоростная иерархия (табл. 5.1): 4 модуля STM-1 объединяются путем побайтового мультиплексирования в модуль STM-4, передаваемый со скоростью 622,080 Мбит/с; затем 4 модуля STM-4 объединяются в модуль STM-16 со скоростью передачи 2488,320 Мбит/с; наконец 4 модуля STM-16 могут быть объединены в высокоскоростной модуль STM-64 (9953,280 Мбит/с).

Формирование модуля STM-1. В сети SDH применены принципы контейнерных перевозок. Подлежащие транспортировке сигналы предварительно размещаются в стандартных контейнерах. Все операции с контейнерами производятся независимо от их содержания, чем и достигается прозрачность сети SDH, т.е. способность транспортировать различные сигналы, в частности, сигналы PDH.

Наиболее близким по скорости к первому уровню иерархии SDH (155,520 Мбит/с) является цифровой поток со скоростью 139,264 Мбит/с, образуемый на выходе аппаратуры плезиохронной цифровой иерархии ИКМ-1920. Его проще всего разместить в модуле STM-1. Для этого поступающий цифровой сигнал сначала «упаковывают» в контейнер (т.е. размещают на определенных позициях его цикла).

Рамка контейнера содержит 9 строк и 260 однобайтовых столбцов. Добавлением слева еще одного столбца – маршрутного или трактового заголовка (Path Over Head – POH) – этот контейнер преобразуется в виртуальный контейнер.

Наконец, чтобы поместить виртуальный контейнер в модуль STM-1, его снабжают указателем, образуя, таким образом, административный блок, а последний помещают непосредственно в модуль STM-1 вместе с секционным заголовком SOH.

Синхронный транспортный модуль STM-1 можно загрузить и плезиохронными потоками со скоростями 2,048 Мбит/с. Такие потоки формируются аппаратурой ИКМ-30, они широко распространены в современных сетях.

Важной особенностью аппаратуры SDH является то, что в трактовых и сетевых заголовках помимо маршрутной информации создается много информации, позволяющей обеспечить наблюдение и управление всей сетью в целом, дистанционные переключения в мультиплексорах по требованию клиентов, осуществлять контроль и диагностику, своевременно обнаруживать и устранять неисправности, реализовать эффективную эксплуатацию сети и сохранить высокое качество предоставляемых услуг.

5.3. Модели и элементы транспортных сетей

Транспортная сеть (transport network) – часть сети связи, охватывающая магистральные узлы, междугородние станции, а также соединяющие их каналы и узлы (национальные, междугородные). В таблице 5.2 показаны структуры моделей транспортных сетей, имеющих функциональные уровни: физический, трактов и каналов.

 

Таблица 5.2. Структуры многоуровневых моделей транспортных сетей
SDH ATM Оптическая сеть
Уровень каналов Цифровые каналы Е1, Е3, Е4 Уровни АТМ Виртуальные каналы Уровень каналов
Уровни трактов Тракты виртуальных контейнеров VC-12 Виртуальные тракты Уровни трактов Другие электрические тракты Тракты SDH
Тракты виртуальных контейнеров VC-3, VC-4 Физический уровень Цифровая секция (тракт) Оптические транспортные системы
Физический уровень Секции мультиплексирования и регенерации Секции мультиплексирования и регенерации Уровни оптической сети Секции оптического мультиплексирования
Оптическая ретрансляция
Физическая среда Физическая среда Оптоволоконная линия

Первичные сети, являющиеся базовыми транспортными или магистральными сетями, служат основой для построения всего многообразия современных мультисервисных сетей связи.

Главным требованием, предъявляемым к транспортным сетям, является выполнение сетью основной функции – обеспечения пользователям возможности доступа ко всем разделяемым ресурсам сети.

Основные информационно-технические характеристики цифровой первичной сети (ЦПС), которые существенно определяют ее возможности по предоставлению гарантированного качества обслуживания пользователей сети и возможности сети в целом, следующие: пропускная способность транспортных магистралей или базовые скорости передачи, определяемые уровнем транспортных модулей (STM-N, N=1, 4, 16,…); объем входящего и исходящего трафика в узлах сети; суммарный трафик в трактах и магистралях сети; надежность или коэффициент готовности сети в целом.

Для оценки надежности таких сложных систем, какими являются ЦПС, применяют понятие готовности, или коэффициента готовности, который определяется долей времени, в течение которого сеть может быть использована по назначению. Готовность сети может быть повышена путем аппаратного резервирования элементов (узлов) сети, резервирования трафика, трактов и каналов за счет соответствующей организации архитектуры всей сети, ее топологии, управления и синхронизации сети, включая сети доступа к ЦПС.

Расширяемость означает возможность сравнительно легкого (в ограниченных пределах) добавления отдельных элементов сети (пользователей, служб), наращивания сегментов сети доступа и замены существующей аппаратуры более мощной.

Масштабируемость означает, что сеть позволяет наращивать количество сетевых узлов и протяженность трактов в очень широких пределах без снижения пропускной способности транспортных магистралей.

Управляемость сети подразумевает возможность централизованно осуществлять конфигурацию, наблюдение, контроль и управление, как каждым сетевым элементом, так и всей сетью в целом, включая управление трафиком и планированием развития сети.

Современная транспортная сеть строится на основе трех основных технологий: плезиохронной иерархии (PDH), синхронной иерархии (SDH) и асинхронного режима переноса (передачи) (ATM).

Используется иерархия скоростей передачи каналов в соответствии с международными рекомендациями МСЭ. При этом технологии плезиохронной цифровой иерархии (ПЦИ/PDH) и синхронной цифровой иерархии (СЦИ/SDH) позволяют сформировать транспортную сеть с выделенными цифровыми каналами для всех пользователей первичной сети.

На основе ЦПС СЦИ/SDH можно создавать наложенные сети с коммутацией каналов, например цифровые сети интегрированного обслуживания (ЦСИО/ISDN), и коммутацией пакетов, например  АТМ (асинхронный режим переноса (АРП/АТМ)).

Технология АТМ или асинхронного режима передачи (АРП/АТМ) разработана как единая универсальная транспортная технология нового поколения сетей с интеграцией услуг, так называемых широкополосных цифровых сетей интегрированного обслуживания (Ш-ЦСИО или B-ISDN).

Технология АТМ совместима со всеми базовыми сетевыми технологиями глобальных сетей – TCP/IP, SDH, PDH, Frame Relay – и сетевыми технологиями локальных сетей. Технология АТМ обеспечивает передачу в рамках одной транспортной сети различных видов трафика (голоса, видео, данных), иерархию скоростей передачи в большом диапазоне (от 25 Мбит/с до 622 Мбит/с) с гарантированной пропускной способностью для ответственных приложений.

Сети TCP/IP (протокол управления передачей/протокол сети Интернет) занимают особое положение среди сетевых технологий. Они играют роль сетевой технологии, объединяющей сети любых типов и технологий, включая глобальные транспортные сети всех известных технологий.

Транспортная сеть на основе PDH/SDH состоит из узлов мультиплексирования (мультиплексоров), выполняющих роль преобразователей между каналами различных уровней иерархии стандартной пропускной способности, регенераторов, восстанавливающих цифровой поток на протяженных трактах, и цифровых кроссов, которые осуществляют коммутацию на уровне каналов и трактов первичной сети.  Современные системы передачи используют в качестве среды передачи сигналов электрический и оптический кабель, а также радиочастотные средства (радиорелейные и спутниковые системы передачи). Цифровой сигнал типового канала имеет определенную логическую структуру, включающую цикловую структуру сигнала и тип ли­нейного кода. Цикловая структура сигнала используется для синхронизации, процессов мультиплексирования и демультиплексирования между различными уровнями иерархии каналов первичной сети, а также для контроля блоковых ошибок. Линейный код обеспечивает помехоустойчивость передачи цифрового сигнала. Аппаратура передачи осуществляет преобразование цифрового сигнала с цикловой структурой в модулированный электрический сигнал, передаваемый затем по среде передачи. Тип модуляции зависит от используемой аппаратуры и среды передачи.

Таким образом, внутри цифровых систем передачи осуществляется передача электрических сигналов различной структуры, на выходе цифровых систем передачи образуются каналы цифровой первичной сети, соответствующие стандартам по скорости передачи, цикловой структуре и типу линейного кода.

Физический уровень (таблица 5.2) образован средой передачи сигналов (волоконно-оптической линией, медной линией, радиолинией) и секциями – участками, где происходит регенерация (ретрансляция) сигналов и мультиплексирование (объединение и разделение) различных сигналов. Благодаря наличию секции регенерации (ретрансляции) удается «очистить» сигнал от искажений и помех. Организация секций мультиплексирования позволяет эффективно использовать физическую среду за счет временного разделения передачи каналов. Физический уровень оптической транспортной сети имеет свою особенность, которая состоит в том, что все преобразования сигналов (усиление, ретрансляция, объединение и разделение, вывод и ввод) произво­дятся исключительно оптическими средствами. Таким способом достигаются наивысшие скорости передачи информационных данных – от десятков гигабит до десятков терабит в секунду (Тбит/с).

Уровень трактов (таблица 5.2). Тракты каждой транспортной сети создаются, чтобы обеспечить сквозное прохождение информационных сигналов. Тракты в сети ATM отличаются от трактов сети SDH тем, что они образуются только при наличии информационного сообщения, а в его отсутствии физические ресурсы транспортной сети отдаются для передачи других сигналов. По этой причине путь следования данных в сети ATM называют виртуальным.

Уровень каналов (таблица 5.2). Для любой из рассмотренных моделей транспортных сетей этот уровень выполняет функции интерфейса со вторичными сетями (коммутаторами телефонных, широкополосных, компьютерных сетей и т.д.). Как правило, на уровне каналов создаются типовые электрические и оптические интерфейсы.

Транспортные сети, построенные в соответствии с различными моделями, совместимы между собой на уровнях каналов или трактов.

Сравнивая технологию SDH с технологией PDH, можно выделить следующие особенности технологии SDH: предусматривает синхронную передачу и мультиплексирование. Элементы первичной сети SDH используют для синхронизации один задающий генератор, как следствие, вопросы построения систем синхронизации становятся особенно важными; предусматривает прямое мультиплексирование и демультиплексирование потоков PDH, так что на любом уровне иерархии SDH можно выделять загруженный поток PDH без процедуры пошагового демультиплексирования. Процедура прямого мультиплексирования называется также процедурой ввода-вывода; опирается на стандартные оптические и электрические интерфейсы, что обеспечивает лучшую совместимость оборудования различных фирм-производителей; позволяет объединить системы PDH европейской и американской иерархии, обеспечивает полную совместимость с существующими системами PDH и, в то же время, дает возможность будущего развития систем передачи, поскольку обеспечивает каналы высокой пропускной способности для передачи ATM, и так далее; обеспечивает лучшее управление и самодиагностику первичной сети. Большое количество сигналов о неисправностях, передаваемых по сети SDH, дает возможность построения систем управления на основе платформы TMN. Технология SDH обеспечивает возможность управления сколь угодно разветвленной первичной сетью из одного центра.

Все перечисленные преимущества обеспечили широкое применение технологии SDH как современной парадигмы построения цифровой первичной сети.

Элементы транспортной сети. Опишем основные элементы системы передачи данных на основе SDH, или функциональные модули SDH. Логика работы или взаимодействия модулей в сети определяет необходимые функциональные связи модулей – топологию, или архитектуру сети SDH.

Сеть SDH, как и любая сеть, строиться из отдельных функциональных модулей ограниченного набора: мультиплексоров, коммутаторов, концентраторов, регенераторов и терминального оборудования. Этот набор определяется основными функциональными задачами, решаемыми сетью.

Мультиплексор. Мультиплексоры SDH выполняют как функции собственно мультиплексора, так и функции устройств терминального доступа, позволяя подключать низкоскоростные каналы PDH иерархии непосредственно к своим входным портам. Они являются универсальными и гибкими устройствами.

Терминальный мультиплексор TM является мультиплексором и оконечным устройством SDH сети с каналами доступа, соответствующим трибам доступа PDH и SDH иерархии (рис.5.1). Терминальный мультиплексор может либо вводить каналы, т.е. коммутировать их со входа трибного интерфейса на линейный выход, или выводить каналы, т.е. коммутировать с линейного входа на выход трибного интерфейса.

Мультиплексор ввода/вывода ADM может иметь на входе тот же набор трибов, что и терминальный мультиплексор (рис.5.1). Он позволяет вводить/выводить соответствующие им каналы. Дополнительно к возможностям коммутации, обеспечиваемым ТМ, ADM позволяет осуществлять сквозную коммутацию выходных потоков в обоих направлениях, а также осуществлять замыкание канала приёма на канал передачи на обоих сторонах ( «восточный» и «западный») в случае выхода из строя одного из направлений. Наконец, он позволяет (в случае аварийного выхода из строя мультиплексора) пропускать основной оптический поток мимо него в обходном режиме. Всё это даёт возможность использовать ADM в топологиях типа кольца.



Рис. 5.1. Синхронный мультиплексор (SMUX): терминальный мультиплексор ТМ или мультиплексор ввода/вывода ADM

 

Регенератор представляет собой упрощенный  мультиплексор, имеющий один входной канал – как правило, оптический триб STM-N и один или два агрегатных выхода (рис.5.2). Он используется для увеличения допустимого расстояния между узлами сети SDH путём регенерации сигналов полезной нагрузки. Обычно это расстояние составляет 15…40 км для длины волны порядка 1300 нм или 40…80 км. – для 1500 нм.



Рис. 5.2. Мультиплексор в режиме регенератора

 

Коммутатор. Физически возможности внутренней коммутации каналов заложены в самом мультиплексоре SDH, что позволяет говорить о мультиплексоре как о внутреннем или локальном коммутаторе. На рисунке 5.3, например, менеджер полезной нагрузки может динамически изменять логическое соответствие между трибным блоком TU и каналом доступа, что равносильно внутренней коммутации каналов. Кроме этого, мультиплексор, как правило, имеет возможность коммутировать собственные каналы доступа, (рис. 5.4), что равносильно локальной коммутации каналов.

В общем случае приходиться использовать специально разработанные синхронные коммутаторы – SDXC, осуществляющие не только локальную, но и общую или проходную (сквозную) коммутацию высокоскоростных потоков и синхронных транспортных модулей STM-N (рис. 5.5). Важной особенностью таких коммутаторов является отсутствие блокировки других каналов при коммутации, когда коммутация одних групп TU не накладывает ограничений на процесс обработки других групп TU. Такая коммутация называется неблокирующей.



Рис. 5.3. Мультиплексор ввода/вывода в режиме внутреннего коммутатора.


Рис. 5.4. Мультиплексор ввода/вывода в режиме локального коммутатора


Рис. 5.5. Общий или проходной коммутатор высокоскоростных каналов

 

Можно выделить шесть различных функций, выполняемых коммутатором: маршрутизация  виртуальных контейнеров VC, проводимая на основе использования информации в маршрутном заголовке ROH соответствующего контейнера; консолидация или объединение виртуальных контейнеров VC, проводимая в режиме концентратора; трансляция потока от точки к нескольким точкам, или к мультиточке, осуществляемая при использовании режима связи «точка – мультиточка»; сортировка или перегруппировка  виртуальных контейнеров VC, осуществляемая с целью создания нескольких упорядоченных потоков VC из общего потока VC, поступающего на коммутатор; доступ к виртуальному контейнеру VC, осуществляемый при тестировании оборудования; ввод/вывод виртуальных контейнеров, осуществляемый при работе мультиплексора ввода/вывода;

5.4. Основы построения топологии цифровой первичной сети

При построении топологии планируемой транспортной сети необходимо предусматривать необходимое резервирование сетевых элементов на аппаратном и сетевом уровне, резервирование трафика, увязать топологию сети с организацией ее управления и синхронизации, предусмотреть организацию соответствующих сетей доступа и их подключение к ЦПС.

Существует базовый набор стандартных топологий:

    Топология «точка-точка». Сегмент сети, связывающий два узла A и B, является наиболее простым примером базовой топологии SDH сети (рис. 5.6). Она может быть реализована с помощью терминальных мультиплексоров ТМ, как по схеме без резервирования канала приёма/передачи, так и по схеме со  стопроцентным резервированием типа 1+1, использующей основной и резервный электрические или оптические агрегатные выходы (каналы приёма/передачи).



Рис. 5.6. Топология «точка-точка», реализованная с использованием ТМ.

 

    Топология «последовательная линейная цепь». Эта базовая топология используется тогда, когда интенсивность трафика в сети не так велика и существует необходимость ответвлений в ряде точек линии, где могут вводиться каналы доступа. Она может быть представлена либо в виде простой последовательной линейной цепи без резервирования, как на рис. 5.7, либо более сложной цепью с резервированием типа 1+1, как на рисунке 5.8. Последний вариант топологии часто называют «упрощённым кольцом».



Рис. 5.7. Топология «последовательная линейная цепь», реализованная на ТМ и TDM.



Рис. 5.8. Топология «последовательная линейная цепь» типа «упрощённое кольцо» с защитой 1+1.

 

    Топология «кольцо». Эта топология (рис. 5.9) широко используется для построения SDH сетей первых двух уровней SDH иерархии (155 и 622 Мбит/с). Основное преимущество этой топологии – лёгкость организации защиты типа 1+1, благодаря наличию в синхронных мультиплексорах SMUX двух пар оптических каналов приёма/передачи: восток – запад, дающих возможность формирования двойного кольца со встречными потоками.



                                                        Рис. 5.9. Топология «кольцо» c защитой 1+1

 

Архитектура сети SDH. Архитектурные решения при проектировании сети SDH могут быть сформированы на базе использования рассмотренных выше элементарных топологий сети в качестве её отдельных сегментов. На­пример, радиально-кольцевая архитектура SDH сети фактически строится на базе использования двух базовых топологий: «кольцо» и «последовательная линейная цепь».

Линейная архитектура для сетей большой протяженности. Для линейных сетей большой протяженности расстояние между терминальными мультиплексорами больше или много больше того расстояния, которое может быть рекомендовано с точки зрения максимально допустимого затухания волоконно-оптического кабеля. В этом случае на маршруте между ТМ (рис. 5.10) должны быть установлены кроме мультиплексоров и проходного коммутатора ещё и регенераторы для восстановления затухающего оптического сигнала. Эту линейную архитектуру можно представить в виде последова­тельного соединения ряда секций, специфицированных в рекомендациях МСЭ G.957 и МСЭ G.958.

Блоки MUX и LT (рис. 5.10) конструктивно образуют единый модуль, основой которого является мультиплексор (МТ). Упрощённая структура трактов и секций сети SDH приведена на рисунке 5.10.



Рис. 5.10. Структура трактов и секций

 

Организация взаимодействия элементов транспортной сети, а также управления сетью достигается использованием определённых интерфейсов (рис. 5.10)

SPI – физический интерфейс STM-N, точка подключения оптического волокна.

PI – физический интерфейс компонентных потоков в PDH, либо SDH, сюда же можно включать и неоктетные цифровые потоки, например, каналы цифрового ТВ, и так далее. Этот интерфейс может быть как электрическим, так и оптическим.

Т – интерфейс, предназначенный для передачи и приёма сигналов син­хронизации.

Q – интерфейс сети управления, точка подключения соединительных линий для двухсторонней передачи информации от узлов управления.

F – интерфейс контроля. В эту точку подключается персональный компьютер (ПК), программное обеспечение которого позволяет контролировать состояние не только своей станции, но и станции своей сети.

В интерфейс Т включен сетевой элемент (СЭ), которым могут управлять или сигнал от первичного эталонного генератора (ПЭГ); или от ведомого задающего генератора (ВЗГ), или сигнал компонентного потока (КП), или линейный сигнал (ЛС). Кроме того, сигналы синхронизации могут быть поданы на сетевые элементы других систем. С выходов СЭ управляющие сигналы поступают в тракты передачи (Вых.2) и приёма (Вых.1).

Контрольные вопросы

1. Что такое плезиохронная цифровая иерархия?
2. Как осуществляется согласование скоростей передачи различных потоков при их объединении в высокоскоростной поток?
3. Какие недостатки имеет плезиохронная цифровая иерархия систем передачи?
4. Что такое синхронный транспортный модуль?
5. Как транспортируются сигналы плезиохронной иерархии по сетям синхронной иерархии?
6.Каковы особенности технологии SDH?
7. Охарактеризуйте физический уровень транспортной сети.
8. Перечислите основные функциональные модули SDH.
9. В чём состоят функции мультиплексора ввода-вывода?
10. Выделите основные функции, выполняемые коммутатором.
11. Перечислите стандартные топологии транспортной сети.
12. Какие схемы построения транспортных сетей используются для по­вышения их надёжности и живучести?
13. Для чего используется интерфейс F?


назад | содержание | вперёд