МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ ЗАОЧНЫЙ УНИВЕРСИТЕТ»

ЭиОВР факультет

Кафедра «Природообустройство и прикладная информатика»

ГИДРАВЛИКА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ И ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ

студентам 2*, 3 курсов направления подготовки бакалавров: 23.03.03 - « Эксплуатация транспортно-технологических машин и комплексов»

профиль: Автомобильный сервис

30.05.06 - «Агроинженерия»,

профили:

Электрооборудование и электротехнологии Технический сервис в агропромышленном комплексе Технические системы в агробизнесе

Москва 2017

Составитель: к.т.н., доц. Гладкова Е.В.

УДК 621.22 (075)

Гидравлика: Методические указания по изучению дисциплины и задания для контрольной работы/Рос. гос. аграр. заоч. ун-т; Сост. к.т.н., доц. Гладкова Е.В. М., 2017, 25с.

Предназначены для студентов 2*,3 курсов

Утверждены методической комиссией ЭиОВР факультета

Рецензенты: к.т.н., доцент Д.О. Гулько, к.т.н., доцент А.А. Переверзев.

Раздел 1. ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ

Дисциплина «Гидравлика» относится к базовой (обязательной) части профессионального цикла ООП. Методические указания по дисциплине составлены учетом требований Федерального Государственного образовательного стандарта (ФГОС) 3+ поколения по направления подготовки транспортно-технологических «Эксплуатация комплексов», профилю подготовки «Автомобильный сервис», утвержденного 14.12.2015 года, приказом Министерства образования и науки Российской Федерации № 1470 и направлению 35.03.06 «Агроинженерия», профили подготовки «Технический сервис в АПК», «Технические системы агробизнесе», «Электрооборудование и электротехнологии», утвержденного 20.10.2015г., приказ № 1172, рабочими программами и рабочими учебными планами.

1.1. Цели и задачи дисциплины

Цели и задачи дисциплины:

Цель дисциплины — изучение общих понятий и законов механики жидких и газообразных сред; строения и принципов действия гидравлических машин, применяемых в сельском хозяйстве; основ сельскохозяйственного водоснабжения и гидромелиорации; получение знаний о законах равновесия и движения жидкостей и о способах применения этих законов при решении практических задач в области автоматизации и механизации технологических процессов сельскохозяйственного производства в АПК.

3. Место дисциплины в структуре ООП:

Дисциплина «Гидравлика» включена в дисциплины базовой части блока 1 «Дисциплины (модули)», Б.1.Б.13.

4. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций по направлению 23.03.03 - Эксплуатация транспортно технологических машин и комплексов: общепрофессиональные компетенции (ОПК):

- владение научными основами технологических процессов в области эксплуатации транспортно-технологических машин и комплексов (ОПК-2);
- готовностью применять систему фундаментальных знаний (математических, естественнонаучных, инженерных и экономических) для идентификации, формулирования и решения технических и технологических проблем эксплуатации транспортно-технологических машин и комплексов (ОПК-3);

профессиональные компетенции (ПК):

- способностью к участию в составе коллектива исполнителей в проведении исследования и моделирования транспортных и транспортнотехнологических процессов и их элементов (ПК-9).

Процесс изучения дисциплины направлен на формирование следующих компетенций по направлению **35.03.06** «**Агроинженерия**» **общепрофессиональные компетенции (ОПК)**:

- способность решать инженерные задачи с использованием основных законов механики, электротехники, гидравлики, термодинамики и тепломассообмена (ОПК-4).

профессиональные компетенции (ПК):

- готовность к участию в проведении исследований рабочих и технологических процессов машин (ПК-2).

В результате изучения дисциплины студент должен: знать:

- основные законы гидростатики, кинематики и динамики движения потоков;
- принципы работы приборов для измерений гидравлических параметров;
- принципы работы гидромашин, их практическое применение; *уметь*:
 - применять уравнение Бернулли для потока реальной жидкости;
 - решать важные прикладные задачи;
- использовать основные методы расчета гидравлических параметров систем, машин и оборудования.

владеть:

- методами расчета жидких потоков;
- приемами постановки инженерных задач для решения их коллективом специалистов различных направлений.

1.2. Библиографический список

Основной

- 1. Гидравлика, гидромашины и гидроприводы: учеб. для вузов/Т.М. Башта и др.-5-е изд., стер.-М.: Альянс, 2011.- 423с.
- 2. Лапшев, Н.Н. Гидравлика: учеб. для вузов/ Н.Н.Лапшев.-2-е изд., испр. –М: Академия, 2008.-269с
- 3. Барекян, А.Ш. Основы гидравлики и и гидропневмоприводов [Электронный ресурс] : учеб. пособие / А.Ш.Барекян СПб. : Agrilib, 2006. 85с. // Электронно-библиотечная система «Agrilib». Режим доступа: http://window.edu.ru/resource/655/58655/files/tstu-tver57.pdf

Дополнительный:

- 4. Шевелев, Ф.А. Таблицы для гидравлического расчета водопроводных труб: справ. пособие / Ф.А. Шевелев, А.Ф. Шевелев. 9 изд., исп. М. Бастет, 2009. -350с.
- 5. Повалихина, О.В. Гидравлика: учеб. пособие для вузов/ О.В. Повалихина. Владивосток, 2007. 104с.
- 6. Голубев, В.И. Расчет основных параметров гидравлического привода: метод. пособие/ В.И. Голубев. М. :МЭИ, 2009. 100с.
- 7. Яковлева, Л. В. Практикум по гидравлике / Л. В. Яковлева М.: Агропромиздат, 2007.
- 8. Сборник задач по машиностроительной гидравлике: учеб. пособие для вузов/ Д.А.Бутаев, З.А. Калмыкова, Л.Г.Подвидз и др.; под ред. И.И.Куколевского, Л.Г.Подвидза. -5-е изд., стер. М.: МГТУ, 2002. 447с.
- 9. Шейпак, А.А. Гидравлика и гидропневмопривод: уч. пособие/А.А. Шейпак. 4-е изд. стер.- М.: М.:МГИУ. –Ч.1: Основы механики жидкости и газа. 2005. 192с.

1.3. Распределение учебного времени по модулям (разделам) и темам дисциплины, часы

Таблица 1

-						Таблица 1
No				В том числе		
п.п.	Наименование модулей и тем дисциплины	Всего	лекции	лабораторные, практические занятия	Самостоятельная работа	Рекомендуемая литература
1	2	3	4	5	6	7
1.	Модуль 1Основные понятия и законы гидравлики.	4(2)	2(1)	2(1)		1,2,3
	1.1. Гидростатическое давление. Основное уравнение гидростатики	10(10)			10(10)	
	1.2. Сила давления на плоские поверхности.	10(10)			10(10)	
2.	Модуль 2. Кинематика, статика и динамика жидкостей и газов.	6(5)	2(1)	4(4)		1,2,3,5
	2.1. Основное уравнение гидродинамики - уравнение Бернулли для невязкой и вязкой жидкости.	10(10)			10(11)	
	2.2. Режимы движения жидкости. Гидравлические сопротивления	10(10)			10(10)	
	2.3. Напорное движение жидкости.	10(10)			10(11)	
	2.4. Гидравлические сопротивления и потери напора.	10(10)			10(11)	
3.	Модуль 3. Гидромеханические процессы.	14(14)	2(1)	2(1)		,3,7,9
	3.1. Истечение жидкости через отверстия и насадки.	10(11)			10(11)	
	3.2. Понятие о гидравлическом ударе				10 (11)	
4.	Модуль 4. Гидравлические машины и гидропневмомприваоды	14(14)	2(1)	2(2)	10(11)	4,8,10
	4.1. Динамические насосы	10(10)			10(10)	
	4.2. Объемные гидромашины	10(10)			10(10)	
	4. 3. Назначение и области применения гидропневсоприводов	16(16)			16(16)	
	Итого	144(144)	8(4)	10(8)	126(132)	

Примечание: в скобках указаны часы для студентов с сокращенным сроком обучения

Раздел 2. СОДЕРЖАНИЕ УЧЕБНЫХ МОДУЛЕЙ ДИСЦИПЛИНЫ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИХ ИЗУЧЕНИЮ

Для успешного усвоения данной дисциплины необходимо, чтобы студент владел основными положениями следующих дисциплин: математика, химия, физика, гидрогеология и основы геологии, инженерная геодезия, гидравлика, механика.

Модули построены таким образом, что они могли быть полезны не только при освоении их на аудиторных занятиях, но и при самостоятельном изучении. Для этого студентам предлагается список литературы.

2.1. 1.Основные понятия и законы гидравлики.

2.1.1 Содержание модуля

Гидростатическое давление. Основное уравнение гидростатики. Сила давления на плоские поверхности.

2.1.2 Вопросы для самоконтроля

- 1. Сформулировать, что такое гидростатическое давление в данной точке. Назвать его основные свойства.
- 2. С помощью каких приборов измеряется гидростатическое давление?
- 3. Привести систему дифференциальных уравнений равновесия жидкости.
- 4. Написать основное уравнение гидростатики
- 5. Раскрыть понятие вакуума, абсолютного и манометрического давления.
- 6. Привести формулу для определения силы манометрического давления на произвольно ориентированную плоскую поверхность.
- 7. Написать и пояснить формулу для определения центра давления, действующего на плоскую наклонную стенку.
- 8. Привести формулы для определения равнодействующей силы давления на цилиндрическую поверхность и ее составляющих.
- 9. Сформулировать закон Архимеда.

2.2. Модуль 2. Кинематика, статика и динамика жидкостей и газов

2.2.1. Содержание модуля

Виды движения жидкости. Основное уравнение гидродинамики - Уравнение Бернулли для невязкой и вязкой жидкости. Режимы движения жидкости. Гидравлические сопротивления. Напорное движение жидкости.

Гидравлические сопротивления и потери напора.

2.2.2. Вопросы для самоконтроля

- 1. Раскрыть понятие установившегося и неустановившегося движения жидкости.
- 2. Сформулировать, что такое линия тока и элементарная струйка жидкости.
- 3. Написать дифференциальное уравнение движения идеальной жидкости.
- 4. Чем характеризуются напорные и безнапорные потоки жидкости, струи.
- 5. Что понимают под местной и средней скоростями движения жидкости?
- 6. Привести уравнение неразрывности для потока несжимаемой жидкости.
- 7. Привести уравнение Бернулли и объяснить физический и геометрический смысл его членов.
- 8. Назвать условия применения уравнения Бернулли.
- 9. Какие трубопроводы принято считать напорными и безнапорными, длинными и короткими?
- 10. Привести формулу для определения транзитного расхода трубопровода?
- 11. Знать три основные задачи расчета простого трубопровода.
- 12. Написать формулу для определения критического числа Рейнольдса для круглых труб постоянного диаметра.
- 13. Написать формулы для определения местных потерь и потерь напора по длине.
- 14. Привести эпюры скоростей ламинарного и турбулентного движения жидкости.
- 15. Дать определение коэффициента сопротивления системы.
- 16. Что означает экономически выгодный диаметр трубопровода?
- 8. Расход элементарной струйки и расход через поверхность.
- 9. Турбулентность и ее основные статистические характеристики.
- 10. Конечно-разностные формы уравнения Навье Стокса и Рейнольдса.
- 11. Гидравлические сопротивления, их вычисления потерь удельной энергии (напора).
- 12. Одномерные нестационарные задачи.
- 13. Уравнение неразрывности в разных формах.
- 14. Принципы расчета тупиковых и кольцевых трубопроводных сетей.

2.3. Модуль 3. Гидромеханические процессы

2.3.1 Содержание модуля

Истечение жидкости через отверстия и насадки. Понятие о гидравлическом ударе. Совершенное сжатие. Малое отверстие. Коэффициент скорости. Коэффициент расхода.

2.3.2 Вопросы для самоконтроля

- 1. Как классифицируются насадки
- 2. Что такое гидравлический удар? Методы борьбы с гидроударом.
- 3. Что называют полным и неполным сжатием струи жидкости?
- 4. Какую трубу называют насадком?

2.4. Модуль 4. Гидравлические машины и гидропневмомприваоды

2.4.1 Содержание модуля

- 4.1. Динамические насосы.
- 4.2. Объемные гидромашины.
- 4.3. Назначение и области применения гидропневмоприводов.

2.4.2 Вопросы для самоконтроля

- 1. Классификация и принцип действия объемных насосов.
- 2. Принцип действия лопастного насоса; рассмотреть его характеристики.
- 3. Дать определение напора, подачи, высоты всасывания, мощности насоса. Как определяется коэффициент полезного действия?
- 1. Рассказать о работе насоса на сеть.
- 2. Что представляет собой явление кавитации? Как влияет на характеристики насоса и каковы пути борьбы с ним?
- 3. Как подобрать требуемый насос с помощью характеристик?
- 4. Классификация и назначение объемных гидроприводов?
- 5. Где применяются гидродинамические передачи?
- 6. Принцип действия и конструкция гидромуфты.
- 7. В чем заключаются особенности сельскохозяйственного водоснабжения?
- 8. Назвать элементы систем водоснабжения.
- 9. Каким образом производится расчет сети?
- 10. Перечислить сооружения для определения расхода и напора в сети.
- 11. Как определяется расход и напор насосной станции?

РАЗДЕЛ З. ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ЕЕ ВЫПОЛНЕНИЮ

3.1. Методические указания по выполнению контрольной работы

По курсу «Гидравлика» студент выполняет контрольную работу, которая включает пять задач, из них четыре задачи посвящены изучению науки гидравлики и одна задача по применению теоретических основ гидравлики в инженерной практике.

Номера задач для выполнения контрольной работы выбираются по двум последним цифрам шифра и устанавливаются с помощью нижеприведенной таблицы 2. Например, для студента, имеющего шифр 123, номера задач находятся на пересечении строки 2 по горизонтали со строкой 3 по вертикали. Для указанного шифра студент решает задачи №№6, 18, 24, 35, 41.

Номера задач контрольной работы

		_					\sim
ı	a	n	П	И	П	ıa.	2

Предпоследняя		Последняя цифра шифра									
цифра шифра	0	1	2	3	4	5	6	7	8	9	
0	9,14,25,	8,16,23,	10,15,22,	1,17,26,	2,19,28,	7,18,29,	6,11,30,	5,20,21,	4,13,27,	3,12,24,	
	38,41	39,50	31,43	32,44	37,45	36,42	33,47	34,46,55	35,48	40,49	
1	4,17,28,	5,19,22,	6,18,29,	7,11,30,	8,20,25,	9,12,21,	1,13,24,	3,15,26,	2,16,30,	4,19,27,	
	36,42	38,47	37,41	39,43	31,44	33,45	40,48	32,50,57	34,49	33,44	
2	3,15,29,	4,17,28,	5,20,26,	6,18,24,	9,12,21,	8,11,23,	9,14,27,	7,16,29,	10,12,22,	1,13,25,	
	32,45	36,43	34,48	35,41	33,42	37,50	38,45	31,43,53	39,46	34,47	
3	6,11,30,	3,12,22,	9,17,24,	5,20,28,	4,18,23,	1,19,25,	7,16,23,	2,14,27,	5,15,26,	10,11,29,	
	38,43	40,45	36,50	33,47	32,49	35,44	39,42	37,48,56	31,42	40,46	
4	8,12,25,	7,11,26,	8,13,21,	9,14,23,	10,20,24,	2,15,28,	1,19,29,	4,18,22,	3,17,25,	5,16,30,	
	39,44	37,42	33,45	38,49	35,41	40,46	36,47	34,50,54	32,43	31,48	
5	1,20,27,	9,13,25,	7,12,28,	3,16,22,	5,14,30,	10,18,26,	2,15,21,	8,11,23,	7,19,29,	6,17,22,	
	35,47	33,44	39,41	31,50	38,48	36,49	34,46	40,42,59	37,45	32,50	
6	5,16,26,	1,15,24,	4,11,30,	2,13,25,	6,17,22,	3,14,27,	8,12,28,	9,19,30,	1,18,21,	7,20,23,	
	37,48	39,41	35,44	36,46	34,43	31,41	32,50	33,45,52	38,47	39,42	
7	2,13,21,	10,14,27,	1,16,23,	4,12,29,	3,11,26,	5,17,22,	10,18,25,	6,13,24,	8,20,28,	9,15,21,	
	31,46	32,47	38,42	34,45	36,50	39,43	35,41	38,44,51	40,49	37,50	
8	10,18,22,	2,20,21,	3,14,25,	8,15,27,	1,13,29,	4,16,24,	5,17,26,	10,12,28,	6,11,23,	2,18,26,	
	33,49	31,46	32,47	37,42	39,46	34,48	31,43	35,41,60	36,44	38,45	
9	7,19,23,	6,18,29,	2,20,27,	10,11,21,	7,15,25,	6,13,30,	3,20,22,	1,17,25,	9,14,24,	8,13,28,	
	34,50	35,48	40,46	32,50	33,47	38,42	37,44	36,49,52	39,50	35,41	

Задание 1 ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ

(задачи к модулю 1)

(данные для решения задач 1 - 10 приведены в табл. 3 - 4)

- **Задача 1.** (Рис. 1.1). Определить приведенную пьезометрическую высоту h_x поднятия пресной воды в закрытом пьезометре (соответствующую абсолютному гидростатическому давлению в точке A), если показание открытого пьезометра h при атмосферном давлении $p_{\rm ar}$, расстояние от свободной поверхности жидкости в резервуаре до точек A и B соответственно h_1 и h_2 .
- **Задача 2.** (рис. 1.2). Закрытый резервуар с морской водой снабжен открытым и закрытым пьезометрами. Определить приведенную пьезометрическую высоту $h_{\rm x}$ поднятия воды в закрытом пьезометре (соответствующую абсолютному гидростатическому давлению в точке A), если показание открытого пьезометра h при атмосферном давлении $p_{\rm at}$, а точка A расположена выше точки B на величину h_2 .
- **Задача 3.** (Рис. 1.3). Определить абсолютное гидростатическое давление в точке A закрытого резервуара с дистиллированной водой, если при атмосферном давлении $p_{\rm at}$ высота столба ртути в трубке дифманометра h, а линия раздела между ртутью и водой расположена ниже точки B на величину h_1 , точка B выше точки A на величину h_2 .
- **Задача 4.** (Рис. 1.4). Закрытый резервуар снабжен дифманометром, установленным в точке B, и закрытым пьезометром. Определить приведенную пьезометрическую высоту h_x поднятия пресной воды в закрытом пьезометре (соответствующую абсолютному гидростатическому давлению в точке A), если при атмосферном давлении $p_{\rm at}$ высота столба ртути в трубке дифференциального манометра h, а точка A расположена на глубине h_1 от свободной поверхности.
- **Задача 5.** (Рис. 1.5). Определить при атмосферном давлении $p_{\rm at}$ высоту $h_{\rm x}$ поднятия ртути в дифференциальном манометре, подсоединенном к закрытому резервуару в точке В, частично заполненному дистиллированной водой, если глубина погружения точки А от свободной поверхности резервуара h_2 , приведенная пьезометрическая высота поднятия воды в пьезометре (соответствующая абсолютному гидростатическому давлению в точке A) h_1 .
- **Задача 6.** (Рис. 1.6). К двум резервуарам А и В, заполненным морской водой, присоединен дифференциальный ртутный манометр. Составить уравнение равновесия относительно плоскости равного давления и определить разность давлений в резервуарах А и В, если расстояние от оси резервуаров до мениска ртути равны h_1 и h_2 .
- **Задача 7.** (Рис. 1.7). Дифференциальный ртутный манометр подключен к двум закрытым резервуарам с пресной водой, давление в резервуаре А равно p_A . Определить давление в резервуаре В p_B , составив уравнение равновесия

относительно плоскости равного давления, определить разность показания ртутного дифманометра h.

Задача 8. (Рис. 1.8). Резервуары А и В частично заполнены водой разной плотности (соответственно ρ_A =998 кг/м³, ρ_B =1029 кг/м³) и газом, причем, к резервуару А подключен баллон с газом. Высота столба ртути в трубке дифманометра h, а расстояние от оси резервуаров до мениска ртути равны h_1 и h_2 . Какое необходимо создать давление p_0 в баллоне, чтобы получить давление p_B на свободной поверхности в резервуаре В?

Задача 9. (Рис. 1.9). К двум резервуарам А и В, заполненным нефтью, присоединен дифференциальный ртутный манометр.

Определить разность давлений в точках A и B, составив уравнение равновесия относительно плоскости равного давления. Разность показаний манометра h.

Задача 10. (Рис. 1.10). Резервуары А и В частично заполнены пресной водой и газом. Определить избыточное давление газа на поверхности воды закрытого резервуара В, если избыточное давление на поверхности воды в закрытом резервуаре А равно p_A , разность уровней ртути в двухколенном дифманометре h, мениск ртути в левой трубке манометра ниже уровня воды на величину h_1 , в правой трубке $-h_3 = 0.25h_1$, высота подъема ртути в правой трубке манометра h_2 . Пространство между уровнями ртути в манометре заполнено этиловым спиртом.

Таблица 3 **Исходные данные для решения задач 1-10**

Исходные		Номера задач									
данные	1	2	3	4	5	6	7	8	9	10	
<i>h</i> , м	0,7	1,2	0,6	0,3	0,17	-	0,3	0,17	0,28	0,3	
h_1 , м	0,5	0,4	0,4	0,7	0,4	0,4	-	0,4	-	0,8	
<i>h</i> ₂ , м	0,2	0,5	0,3	-	0,13	0,2	-	0,13	-	0,35	
p_{A} , к Π а	-	-	-	-	-	-	210	-	-	99	
$p_{\rm B}$, $\kappa \Pi a$	_	_	_	_	112	_	_	112	_	_	

Таблица 4 **Удельный вес и плотность некоторых жидкостей**

No	Название	Температура,	Плотность р,	Удельный вес
п/п	жидкости	t °C	кг/м ³	γ, κH/m ³
1	Пресная вода	10	999,73	9,80400
2	Морская вода	15	1020-1030	10,00278-100085
3	Дистиллированная вода	20	992,215	9,7336
4	Ртуть	20	13546	132,841
5	Керосин	15	790-820	7,74725-8,04145
6	Нефть натуральная	15	700-900	6,86465-8,82598
7	Спирт этиловый	15-18	790	7,74725
	_			

Задание 2

ДАВЛЕНИЕ НА ПЛОСКУЮ СТЕНКУ

(задачи к модулю 2)

(данные для решения задач 11-20 приведены в табл. 5)

В задачах 11-20 необходимо построить эпюру гидростатического давления.

Задача 11. (Рис. 2.1). Шлюзовое окно закрыто щитом треугольной формы шириной a. За щитом воды нет, а глубина воды перед ним $-h_1$, при этом горизонт воды перед щитом совпадает с его вершиной. Определить силу гидростатического давления и положение центра давления на щит.

Задача 12. (Рис. 2.2). Плоский квадратный щит шириной b установлен с углом наклона к горизонту α . Глубина воды перед щитом $-h_1$, защиты $-h_2$. Определить силу абсолютного гидростатического давления и центр давления жидкости на шит.

Задача 13. (Рис. 2.3). Для сброса излишков воды используется донный водовыпуск, прямоугольный затвор которого имеет размеры a и b, угол наклона α . Глубина воды от ее свободной поверхности до нижней кромки затвора $-h_1$. Определить силу избыточного гидростатического давления жидкости на затвор водовыпуска.

Задача 14. (Рис. 2.4). Затвор донного водовыпуска треугольной формы имеет ширину a и высоту b. Угол наклона затвора α , нижняя кромка затвора находится в воде на глубине h_1 . Определить силу абсолютного гидростатического давления жидкости и положение центра давления на затвор.

Задача 15. (Рис. 2.5). Цистерна диаметром D=1,4 м заполнена керосином (плотность ρ_{κ} =830 кг/м³) на глубину h_1 . Определить силу избыточного гидростатического давления p, которую необходимо приложить для открытия крышки А цистерны, а также найти координату точки приложения этой силы.

Задача 16. (Рис. 2.6). Отверстие шлюза-регулятора перекрытого плоским металлическим затвором высотой a, шириной b и толщиной c=0,25 b; удельный вес материала, из которого он изготовлен γ_3 =11 кH/м 3 . Глубина воды слева от затвора h_1 , а справа $-h_2$. Коэффициент трения скольжения f =0,45. Определить начальную силу тяги T, необходимую для открытия затвора, равнодействующую силы давления воды на затвор и положение центра ее приложения.

Задача 17. (Рис. 2.7). Прямоугольный щит высотой a, шириной b, толщиной c=0,25 b, массой m=1,8 τ , с углом наклона α перекрывает отверстие в теле плотины. Нижняя кромка щита находится в воде на глубине h_1 , коэффициент трения скольжения его направляющих f =0,3. Определить силу тяги τ , которая необходима для поднятия щита вверх.

Задача 18. (Рис. 2.8). Плоский прямоугольный щит размерами $a \times b$, весом G=26 кH, перекрывает выходное отверстие резервуара. Глубина воды перед щитом от свободной поверхности воды до нижней его кромки h_1 , за щитом $-h_2$. Определить начальную силу тяги T троса, необходимую для открытия щита. Трением в шарнирах пренебречь.

Задача 19. (Рис. 2.9). Для создания подпора в реке применяется плотина Шануана, представляющая собой плоский прямоугольный щит, который может вращаться вокруг горизонтальной оси О. Угол наклона щита α , глубина воды перед щитом h_1 , а за щитом $-h_2$. Определить положение оси вращения щита x_0 , при котором в случае увеличения верхнего уровня воды выше плотины, щит опрокидывался бы под ее давлением.

Задача 20. (Рис.2.10). Ирригационный канал перегораживается плоским квадратным щитом шириной a, весом G=20 кH, с углом наклона α . Глубина воды перед щитом h_1 , а за ним $-h_2$. Определить, пренебрегая трением в шарнире, начальную силу тяги T, которую необходимо приложить для подъема щита.

Таблица 5 **Исходные данные для решения задач 11-20**

Исходные		Номера задач									
данные	11	12	13	14	15	16	17	18	19	20	
<i>h</i> ₁ , м	6	8	12	11	0,7	5	9	8	3	2,2	
<i>h</i> ₂ , м	-	2	-	-	-	2,5	-	4	1	1	
а, м	2	-	1,5	1,5	-	4	1,9	6	-	6	
<i>b</i> , м		4	3	2		2	1,5	7	-	-	
a^o	-	45	60	45		-	70	_	60	60	

Задание 3

ДЛИННЫЕ ТРУБОПРОВОДЫ. ПАРАЛЛЕЛЬНОЕ И ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ ТРУБ. СИФОННЫЙ ТРУБОПРОВОД. ГИДРАВЛИЧЕСКИЙ УДАР

(задачи к модулю 2)

(данные для решения задач 21-30 приведены в табл. 6)

Задача 21. (Рис. 3.1). От пункта А проложена водопроводная сеть: с последовательным и параллельным соединениями стальных, бывших в эксплуатации, трубопроводов, к двум водоемам на разных отметках и постоянной разницей уровней Н. Вода подается из одного водоема в другой посредством сифона с углами поворота α и β , выполненного из стального трубопровода диаметром d. От нижнего водоема отходит стальной трубопровод длиной L и диаметром d, заканчивающийся задвижкой. На последнем участке последовательного соединения трубопроводов имеется равномерно распределенный путевой объемный расход q и объемный расход в конце трубопровода Q_2 .

Определить:

- 1. Объемный расход в сифоне.
- 2. Распределение объемного расхода воды Q_1 в параллельных ветвях водопровода.
- 3. Потери напора по длине трубопровода на участках последовательного соединения.
- 4. Повышение давления Δp в трубопроводе при внезапном закрытии задвижки.

Задача 22. (Рис. 3.2). Из источника А вода подается в разветвленную сеть. Магистральный трубопровод имеет последовательно участки с объемным расходом Q_2 , длиной L, диаметрами d, d/2, d/3 и параллельные ветви с объемным расходом Q_1 , имеющие диаметры d/2. На одном из участков имеется путевой объемный расход воды q. По ответвлению вода подается в резервуар, который связан посредством сифонного трубопровода с другим резервуаром. Разница уровней в резервуарах Н. Сифонный трубопровод выполнен с углами поворота α и β , имеет сетку с обратным клапаном. От нижнего резервуара отходит чугунный трубопровод с толщиной e, в котором перед закрытием задвижки имеется давление p_0 , а давление при мгновенном закрытии задвижки возрастает до p.

Определить:

- 1. Распределение расхода в ветвях трубопровода на параллельных участках.
- 2. Потери напора на последовательных участках трубопровода.
- 3. Начальную скорость V_o движения воды в чугунном трубопроводе с задвижкой.
- 4. Диаметр сифона.

Задача 23. (Рис. 3.3). В тепличном комбинате стальные трубопроводы для подачи питательного раствора (кинематическая вязкость $v=0,01~{\rm cm}^2/{\rm c}$) разветвляются на три участка: последовательный с путевым объемным расходом воды q и объемным расходом Q_2 , параллельный с объемным расходом Q_1 и участок длиной L, толщиной стенки e и объемным расходом Q_3 , в конце которого установлена задвижка. Резервуары с питательным раствором сообщаются посредством сифона с углами поворота α и β . Движение в сифоне происходит с разностью напоров H. Последовательные и параллельные участки трубопроводов имеют длину L, диаметры d, d/2, d/3, d/4.

Определить:

- 1. Повышение давления Δp при внезапном закрытии задвижки.
- 2. Распределение расхода в параллельных ветвях участка.
- 3. Потери напора h_1 , h_2 , h_3 на последовательных участках трубопровода.

Задача 24. (Рис. 3.4). Из пункта А вода подается по чугунному трубопроводу в открытые емкости с разницей между верхней и нижней отметками — Н. Емкости сообщаются посредством сифона с объемным расходом $Q_{\text{сиф}}$, выполненного из чугунных труб с углами поворота α и β . Трубопровод с объемным расходом Q_2 состоит из последовательных участков каждый длиной L и диаметрами d, d/2, d/4. Параллельный участок состоит из двух ветвей каждая длиной L и диаметром d/2. От нижней емкости отходит чугунный трубопровод с толщиной стенок e и диаметром d, заканчивающийся задвижкой. Начальное избыточное давление в трубопроводе — p_0 , начальная скорость — V_0 .

Определить:

- 1. Потери напора по длине трубопровода при последовательном соединении.
- 2. Распределение расхода Q_1 в трубопроводе на участках с параллельным соединением.
- 3. Напряжение σ при внезапном закрытии трубопровода.
- 4. Диаметр сифона.

Задача 25. (Рис. 3.5). Из нефтехранилища А нефть подается в накопительный резервуар, где поддерживается постоянный уровень. Из резервуара-накопителя нефть поступает в приемный резервуар под напором Н при помощи сифонного нефтепровода диаметром d под углами α и β . От хранилища А по чугунному трубопроводу нефть подводится к двум параллельным ветвям каждая длиной L и диаметром d/2 с объемным расходом Q_1 . Система последовательно соединенных трубопроводов состоит из двух участков каждый длиной L, диаметрами d, d/2 с объемным расходом Q_2 . Третий участок, кроме транзитного объемного расхода Q_1 , имеет равномерно распределенный путевой объемный расход q. От приемного резервуара отходит чугунный трубопровод диаметром d, толщиной стенок e и объемным расходом Q, заканчивающийся задвижкой.

Определить:

- 1. Объемный расход в сифоне.
- 2. Повышение давления Δp в чугунном трубопроводе при внезапном закрытии задвижки.
- 3. Потери напора по длине нефтепровода на участках последовательного соединения.
- 4. Распределение расхода нефти на параллельных участках нефтепровода.

Задача 26. (Рис. 3.6). Водопроводная сеть, выполненная из чугунных трубопроводов толщиной стенок e, состоит из последовательных и параллельных участков, двух резервуаров, сообщающихся при помощи сифона, и отходящего от нижнего резервуара чугунного трубопровода объемным расходом Q_2 с задвижкой. Один из последовательных участков имеет путевой объемный расход q. Горизонты уровней в резервуарах разнятся на величину Н. Сифонный трубопровод с углами поворота α и β имеет обратный клапан с сеткой и пропускает объемный расход $Q_{\text{сиф}}$. Перед закрытием задвижки давление p_0 , после мгновенного закрытия задвижки давление -p.

Определить:

- 1. Распределение объемного расхода Q₁ в трубопроводах при параллельном соединении.
- 2. Диаметр сифона.
- 3. Потери напора по длине последовательно соединенных участков трубопровода.
- 4. Определить начальную скорость V_0 в чугунном трубопроводе.

Задача 27. (Рис. 3.7). Два бассейна сообщаются чугунным сифоном, имеющим обратный клапан с сеткой с углами поворотов α и β . Отметки уровней воды отличаются на величину H. От нижнего бассейна отходит бетонная труба диаметром d, длиной L, с объемным расходом Q, с задвижкой. Магистральные асбестоцементные трубопроводы имеют последовательные и параллельные участки. Объемный расход в трубопроводе с параллельными участками — Q_1 , с последовательным соединением участков — Q_2 . На конечном участке последовательного соединения происходит равномерная путевая раздача q.

Определить:

- 1. Распределение расхода по параллельным ветвям.
- 2. Потери напора на последовательных участках.
- 3. Повышение давления Δp в трубопроводе при внезапном закрытии задвижки.
- 4. Объемный расход в сифоне $Q_{\text{сиф}}$.

Задача 28. (Рис. 3.8). Из водоисточника А вода подается в накопительный резервуар, где поддерживается постоянный уровень. Из резервуара-накопителя вода поступает в приемный резервуар при помощи стального сифонного водопровода, имеющего углы поворота α и β ,

пропускающего объемный расход $Q_{\text{сиф}}$. Стальной трубопровод диаметром d, длиной L, толщиной стенок e, отходящий от нижнего резервуара, заканчивается задвижкой. Система последовательно соединенных трубопроводов длиной L и диаметрами d, d/2, d/3, d/4 пропускает транзитом из источника A объемный расход Q_2 к потребителю. Система трубопроводов с параллельными ветвями заканчивается последовательным участком с равномерно распределенным путевым объемным расходом q.

Определить:

- 1. Повышение давления Δp в трубопроводе при внезапном закрытии задвижки.
- 2. Диаметр сифона.
- 3. Распределение расхода в трубопроводах с параллельным соединением.
- 4. Потери напора на участках трубопровода при последовательном соединении.

Задача 29. (Рис. 3.9). Два хранилища с керосином сообщаются со стальным сифоном, имеющим длину L и диаметр d. Отметки уровней керосина в хранилищах отличаются на величину H. От нижнего хранилища отходит стальная труба диаметром d с задвижкой и толщиной стенок e. От пункта A отходят стальные трубопроводы с последовательным и параллельным соединениями, имеющие объемные расходы соответственно Q_2 и Q_1 . На втором участке последовательного соединения производится равномерная путевая раздача воды q.

Определить:

- 1. Объемный расход в сифоне при заданном диаметре.
- 2. Потери напора на участках с последовательным соединением.
- 3. Начальную скорость V_0 движения керосина в стальном трубопроводе, при которой давление при мгновенном закрытии задвижки достигает величины p, если перед закрытием задвижки в трубопроводе давление p_0 .
- 4. Распределение расхода в параллельных ветвях трубопровода.

Задача 30. (Рис. 3.10). Из источника А вода подается по чугунному трубопроводу в водоем со скоростью V_0 , где поддерживается уровень, который сообщен с другим водоемом посредством сифона. Чугунный сифон имеет диаметр d и углы поворота α и β . От второго водоема отходит чугунный трубопровод диаметром d толщиной стенки e, в котором перед закрытием задвижки создается давление p_0 . Другой участок системы водоснабжения имеет трубопроводы с параллельным и последовательным соединениями. Путевой объемный расход в конце последовательного участка составляет q.

Определить:

- 1. Распределение расхода в параллельных ветвях трубопровода.
- 2. Потери напора в последовательно соединенных трубопроводах.
- 3. Объемный расход в сифоне Q.

4.	Напряжение σ в стенках трубопровода при внезапном закрытии задвижки, если до закрытия вода в нем двигалась со скоростью V_o

Исходные данные для решения задач 21-30

Таблица 6

Исходные				Н	мера	а зада	Ч			
Данные	21	22	23	24	25	26	27	28	29	30
Магистральный										
трубопровод:										
диаметр $d \times 10^{-1}$, м	6	3	6	4	2,0	6	3	4	3,0	2 3
длина $L \times 10^2$, м	8	5	3	3	4	4	2,5	2	2,5	3
Расход воды										
$Q_1 \times 10^{-2}$, M^3/c	6	18	20	12	20	29,5	25	15	17	4
$Q_2 \times 10^{-2}$, M^3/c	10	12	12	3	20	35	30	9	16	-
Путевой расход воды на										
1 п. м										
$q\times10^{-2}$ π/c	4	3	6	10	3,5	2	2	5	3	1,8
Углы поворота сифона										
α, град	45	90	60	90	45	90	45	90	45	60
β, град	60	90	90	90	90	90	90	90	90	60
Разность уровней в										
резервуарах (напор)	1		1.1	1.2	1.2		2.6		1 4	2.4
Н, м	1	3	1,1	1,2	1,3	2	2,6	2	1,4	2,4
Расход сифона		27		25		20		25		
$Q_{cu\phi} \times 10^{-3}, \text{ m}^3/\text{c}$	-	27	-	35	-	28	-	25	-	-
Расход воды в										
трубопроводе с			120		35		21	25		
задвижкой	_	_	120	_	33	_	21	23	_	_
$Q \times 10^{-3}$, M^{3}/c										
Давление у задвижки:										
перед ее закрытием	_	1,2	_	0,6	_	6	_	_	4	1,3
$p_{\rm o} \times 10^5$, Πa		1,2		0,0						1,5
после ее внезапного										
закрытия	_	1,9	_	_	_	1,7	_	_	2,2	_
$p_{\rm o} \times 10^6$, Π a		1,5				1,,			_,_	
Толщина стенок трубы	7	7	8	7	5	12	8	10	7	7
e, mm		,		,						,
Скорость течения										
жидкости в трубе до	1,3	_	_	1,2	_	_	_	_	_	1,1
закрытия задвижки υ_o ,										
M/C										

Задание 4

МЕСТНЫЕ СОПРОТИВЛЕНИЯ. ИСТЕЧЕНИЕ ЖИДКОСТИ ЧЕРЕЗ ОТВЕРСТИЯ И НАСАДКИ

(задачи к модулю 4)

(данные для решения задач 31 – 40 приведены в табл. 7)

Сравнить расход воды через насадок с расходом через отверстия в тонкой стенке того же диаметра. Коэффициент расхода для отверстия μ =0,62; расчет коротких трубопроводов произвести без учета работы насадка и наоборот.

Задача 31. (Рис. 4.1). Из открытого резервуара при постоянном напоре H_1 вода температурой t=50 °C вытекает с одной стороны в атмосферу по короткому трубопроводу диаметром d_1 и длиной l_1 шероховатостью стенок $\Delta=1$ мм, задвижкой, коэффициент сопротивления которой ξ_3 и на конце диффузором $\xi_{\text{диф}}=0.9$, площадь живого сечения которого за расширением $S_2=2S_1$ с другой стороны, вода подается в другой резервуар через затопленный внешний цилиндрический насадок (насадок Вентури). Разность уровней между ними Н. Насадок имеет диаметр $d_{\text{н}}$, длину $l_{\text{н}}=5d_1$ и коэффициент расхода насадки $\mu_{\text{н}}$.

Определить:

- 1. Скорость истечения v_2 , расход воды Q_2 и коэффициент гидравлического трения λ по короткому трубопроводу.
- 2. Расход через насадок Q_н.

Задача 32. (Рис. 4.2). К открытому резервуару с правой стороны подсоединен короткий стальной трубопровод, состоящий из двух участков длиной l_1 и l_2 , диаметрами d_1 и d_2 и снабженный краном, коэффициент сопротивления которого $\xi_{\rm kp}$. Истечение воды температурой $t=10\,^{\circ}{\rm C}$ происходит по короткому трубопроводу в атмосферу под постоянным напором H_1 . С левой стороны присоединен внутренний цилиндрический насадок (насадок Борда) диаметром $d_{\rm H}$ и длиной $l_{\rm H}=5d_{\rm H}$ с коэффициентом расхода насадки $\mu_{\rm H}$, истечение происходит при разности уровней в резервуарах H.

Определить:

1. Скорость v и расход Q вытекаемой воды из короткого трубопровода, расход через насадок $Q_{\rm H}$.

Задача 33. (Рис. 4.3). К закрытому резервуару, на свободной поверхности которого действует манометрическое давление $p_{\rm M}$, с правой стороны подсоединен чугунный трубопровод переменного сечения диаметрами d_1 и d_2 . На первом участке длиной l_1 установлен вентиль, коэффициент сопротивления которого $\xi_{\rm B}$. Второй участок длиной l_2 , заканчивается соплом диаметром $d_{\rm c} = d_1$ с коэффициентом сопротивления $\xi = 0.06$ (коэффициент сжатия струи на выходе из сопла $\epsilon = 1$). С левой стороны находится затопленный конически сходящийся насадок диаметром

выходного сечения $d_{\rm H}$, истечение из которого происходит при постоянной разности уровней H, коэффициентом расхода $\mu_{\rm H}$ и длиной $l_{\rm H}$ =5 $d_{\rm H}$. Трубопровод и насадок подсоединены на глубине H₁, температура воды t=+10 °C.

Определить:

- 1. Скорость истечения v_c и расход Q_H , вытекающей из сопла воды.
- 2. Расход воды через затопленный насадок Q_н.

Задача 34. (Рис. 4.4). Истечение происходит из открытого резервуара в атмосферу при постоянном напоре воды H_1 по короткому трубопроводу переменного поперечного сечения диаметрами d_1 и d_2 и длинами l_1 и l_2 , для которых коэффициенты гидравлического трения соответственно равны λ_1 и λ_2 . На втором участке трубопровода имеются два колена с плавным поворотом и понижением трубопровода на H₂=1,5 м и задвижка, коэффициент сопротивления каждого поворота ξ, коэффициент сопротивления задвижки ξ_3 . Истечение из конически расходящегося насадка диаметром выходного сечения $d_{\rm H}$ и длиной $l_{\rm H}$ =5 $d_{\rm H}$ происходит под уровень при постоянной разности уровней Н. Коэффициент скорости и коэффициент расхода насадка равны он = ин.

Определить:

- 1. Скорость истечения $v_{\rm TD}$ и расход $Q_{\rm TD}$ через короткий трубопровод.
- 2. Скорость истечения $v_{\rm H}$ и расход $Q_{\rm H}$ через затопленный конически расходящийся насадок.

Задача 35. (Рис. 4.5). Из открытого резервуара по короткому стальному трубопроводу постоянного поперечного сечения d_1 и длиной l_1 с краном, коэффициент сопротивления которого $\xi_{\rm kp}$, заканчивающимся соплом диаметром $d_{\rm c}$ =0,5 d_1 , вытекает вода в атмосферу при t=+30 °C. Истечение происходит под напором H_1 . С другой стороны к резервуару подсоединен коноидальный насадок диаметром выходного сопла $d_{\rm H}$ и длиной $l_{\rm H}$ =5 $d_{\rm H}$, истечение из которого происходит при разности уровней в резервуарах H с коэффициентом расхода насадки $\mu_{\rm H}$.

Определить:

- 1. Скорость истечения из сопла $v_{\rm c}$ и расход воды по короткому трубопроводу $Q_{\rm c}$.
- 2. Расход воды через затопленный коноидальный насадок $Q_{\scriptscriptstyle H}$.

Задача 36. (Рис. 4.6). Вода при температуре t=15 °C из резервуара А подается в резервуар В по трубопроводу, состоящему из двух участков длиной l_1 и l_2 диаметром d_1 и d_2 . Коэффициент гидравлического трения λ . Коэффициент потерь при входе в трубу $\xi_{\rm Bx}$. С другой стороны на том же уровне к резервуару А подсоединен внешний цилиндрический насадок (насадок Вентури) диаметром $d_{\rm H}$ и длиной $l_{\rm H}$ =5 $d_{\rm H}$. Коэффициент скорости насадки $\phi_{\rm H}$.

Определить:

- 1. Напор H_1 , который нужно поддержать в баке A, чтобы наполнить бак B, объемом $W_R = 18 \text{ m}^3$ за 30 мин.
- 2. Скорость истечения воды через насадок в предложении, что в резервуаре A находится вода под напором H_1 , определенным из предыдущего условия.

Задача 37. (Рис. 4.7). Вода при температуре t=20 °C из резервуара А подается в резервуар В со скоростью v=0,5 м/с по стальному трубопроводу диаметром d_1 и длиной l_1 . Уровень воды в баке А поддерживается постоянным H_1 . Коэффициенты сопротивления: входа в трубу $\xi_{\rm вx}$; крана $\xi_{\rm кр}$; колена без закругления $\xi_{\rm кол~1}$; колена с закруглением $\xi_{\rm кол~2}$. На глубине H_1 к резервуару подсоединен внутренний цилиндрический насадок (насадок Борда) диаметром $d_{\rm H}$ и длиной $l_{\rm H}$ =5 $d_{\rm H}$ при коэффициенте скорости для насадка $\phi_{\rm H}$.

Определить:

- 1. Время заполнения водой резервуара В объемом $W_B=1,15 \text{ м}^3$ и потери напора в трубопроводе.
- 2. Скорость истечения воды из насадка $v_{\rm H}$.

Задача 38. (Рис. 4.8). Из резервуара А, заполненного водой на высоту H_1 , находящегося под манометрическим давлением $p_{\rm M}$, вода подается в резервуар В на высоту H_2 = H_1 +H по стальному трубопроводу длиной l_1 и диаметром d_1 , с коленом и задвижкой, коэффициент сопротивления задвижки ξ_3 ; каждого колена с закруглением $\xi_{\rm кол}$ при коэффициенте гидравлического трения λ_1 . К резервуару А на глубине H_1 подсоединен конически сходящийся насадок диаметром выходного сечения $d_{\rm H}$ и длиной $l_{\rm H}$ =5 $d_{\rm H}$, истечение из которого происходит в атмосферу коэффициентами расхода $\mu_{\rm H}$ и скоростью $\phi_{\rm H}$. Кинематическая вязкость воды ν =1,24×10⁻⁶ м²/с. Скоростным напором и изменением уровня в баке А пренебречь.

Определить:

- 1. Режим течения, расход $Q_{\text{тр}}$ и скорость $v_{\text{тр}}$ протекающей по трубопроводу воды.
- 2. Скорость $V_{\scriptscriptstyle H}$ и расход $Q_{\scriptscriptstyle H}$, проходящий через конически сходящийся насадок.

Задача 39. (Рис. 4.9). Из резервуара A, на свободной поверхности которого избыточное давление $p_{\rm M}$, вода температурой t=15 °C поступает в резервуар B по трубопроводу переменного сечения, состоящему из двух участков длиной l_1 и l_2 и диаметрами d_1 и d_2 , с задвижкой и коленом, коэффициенты сопротивлений: колена $\xi_{1\rm K}$, полностью открытой задвижки ξ_3 и потерь на вход в трубу $\xi_{\rm BX}$ и соответственно коэффициенты гидравлического трения на первом участке λ_1 , на втором - λ_2 . Разность уровней в резервуарах H_2 = H_1 +H.

На глубине H_1 к резервуару А подсоединен конически расходящийся насадок диаметром выходного сечения $d_{\rm H}$ и длиной $l_{\rm H}$ =5 $d_{\rm H}$, истечение из которого происходит в атмосферу с коэффициентами расхода и скорости

 $\mu_{\text{H}} = \phi_{\text{H}}$. Скоростным напором и изменением уровня в резервуаре А пренебречь.

Определить:

- 1. Режим течения, скорость $v_{\rm тp}$ и расход воды $Q_{\rm тp}$, поступающей в резервуар В по трубопроводу.
- 2. Скорость $v_{\rm H}$ и расход воды $Q_{\rm H}$ через конически расходящийся насадок.

Задача 40. (Рис. 4.10). Вода при температуре t=20 °C подается из резервуара A в резервуар B по короткому трубопроводу, состоящему из двух участков длиной l_1 и l_2 и диаметрами d_1 и d_2 с коэффициентом гидравлического трения λ , снабженному краном с коэффициентом сопротивления $\xi_{\rm кp}$. Разность уровней в резервуарах равна H. На глубине H_1 к резервуару A подсоединен коноидальный насадок диаметром выходного сечения $d_{\rm H}$ и длиной $l_{\rm H}$ =5 $d_{\rm H}$, коэффициент расхода насадка $\mu_{\rm H}$.

Определить:

- 1. Расход $Q_{тр}$, поступающий в резервуар B по короткому трубопроводу.
- 3. Расход воды через коноидальный насадок Q_н.

Исходные данные					Номер	а задач	I			
	31	32	33	34	35	36	37	38	39	40
Длина трубопроводов										
<i>l</i> ₁ , м	6	5	12	1,2	5	10	16	5	10	9
<i>l</i> ₂ , M	-	12	6	4	-	12	-	-	14	12
Диаметр труб										
$d_1 \times 10^{-2}$, M	0,8	2	1,2	4	1	2	1	1	2	0,8
<i>d</i> ₂ ×10 ⁻² , м	-	1	2,5	1	-	0,8	-	-	0,8	1,5
Диаметр насадка $d_{\scriptscriptstyle ext{H}} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	1	1	1,2	2	0,8	1	1	1	2	0,8
Напор в резервуарах Н, м	2	2,5	2,5	3	2	-	-	1,5	3	4
Н ₁ , м	6		8,5	9	8	-	7	5	6	7
Коэффициент расхода насадка µн	0,82	0,71	0,94	0,45	0,97	-	-	0,94	0,45	0,97
Коэффициент скорости для насадка фн	-	-	-	0,45	-	0,82	0,71	0,96	0,45	-
Коэффициент сопротивления										
задвижки ξ_3 (вентиля ξ_B)	2,5	-	4	8	-	-	-	9	5	-
Коэффициент гидравлического трения λ_1	-	-	-	0,24	-	-	-	0,04	0,025	0,032
λ_2	-	-	-	0,025	-	0,03	-	-	0,04	-
Коэффициент сопротивления колена ξ _{1κ}	-	-	-	0,15	-	-	0,25	0,25	0,4	-
ξι 2	-	-	-	0,15	-	-	0,14	0,25	-	-
Коэффициент сопротивления крана $\xi_{\kappa p}$	-	3	-	-	2,5	-	1,5	-	-	4,2
Коэффициент потерь при входе в трубу $\xi_{\text{вх}}$	-	-		-	-	0,5	0,5	-		-

Задание 5 ВЫБОР ЦЕНТРОБЕЖНОГО НАСОСА, ПРОВЕРКА ЕГО РАБОТЫ НА СЕТЬ

(задачи к модулю 4)

(данные для решения задач 41 – 50 приведены в табл. 8)

- **Задача 41.** (Рис. 5.1). Для поддержания постоянного уровня в резервуаре H_{Γ} вода из берегового колодца перекачивается центробежным насосом с объемным расходом Q. Всасывающий и нагнетательный трубопроводы имеют соответственно: длины $l_{\rm BC}$, $l_{\rm H}$; диаметры $d_{\rm BC}$, $d_{\rm H}$; коэффициенты сопротивления трения $\lambda_{\rm BC}$ =0,025, $\lambda_{\rm H}$ =0,03; суммарные коэффициенты местных сопротивлений $\xi_{\rm BC}$ =8; $\xi_{\rm H}$ =12.
- 1. Произвести выбор центробежного насоса. Построить его рабочие характеристики H=f(Q), $\eta=f(Q)$.
- 2. Построить характеристику трубопровода $H_{rp} = f(Q)$ и определить рабочую точку насоса.
- 3. Определить мощность на валу насоса для рабочей точки насоса. КПД насоса определить по характеристике $\eta = f(Q)$.
- 4. Как изменяется напор и мощность насоса, если подачу воды задвижкой увеличить на 15%?
- **Задача 42.** (Рис. 5.2). Для орошения полей вода (температура воды t $^{\circ}$ C) из реки подается с помощью центробежного насоса с объемным расходом Q на высоту H_{Γ} . Всасывающий и нагнетательный чугунные трубопроводы, бывшие в эксплуатации, имеют соответственно: диаметры $d_{\rm BC}$, $d_{\rm H}$ и длины $l_{\rm BC}$, $l_{\rm H}$. Местные потери $h_{\rm H}$ во всасывающем трубопроводе принять равными 100% от потерь по длине $h_{\rm I}$, а местными потерями напора в нагнетательном трубопроводе пренебречь.
 - 1. Подобрать центробежный насос.
 - 2. Определить рабочую точку при работе насоса на сеть.
- 3. Определить мощность на валу насоса для рабочей точки. КПД для расчета найти по характеристике центробежного насоса.
- 4. Как изменится мощность на валу насоса, если подачу воду уменьшить на 15%.
- **Задача 43.** (Рис. 5.3). Для обогрева ремонтных мастерских используется котельная, в которую из подземного источника вода температурой t °C подается на высоту $H_{\rm r}$ центробежным насосом с объемным расходом Q. Всасывающий и нагнетательный стальные трубопроводы имеют соответственно: диаметры $d_{\rm BC}$, $d_{\rm H}$ и длины $l_{\rm BC}$, $l_{\rm H}$. Местные потери $h_{\rm M}$ во всасывающем трубопроводе принять равными 100% от потерь по длине $h_{\rm I}$, а местными потерями в нагнетательном трубопроводе пренебречь.
- 1. Подобрать насос. Построить рабочие характеристики насоса H=f(Q) и $\eta=f(Q)$.

- 2. Определить напор и подачу насоса по рабочей точке при его работе на трубопровод, найти мощность на валу насоса.
- 3. Как изменится напор и мощность насоса, если подачу воды увеличить на 10%.

Задача 44. (Рис. 5.4). Подача питательного раствора температурой t $^{\rm o}$ C объемом W=50 м $^{\rm 3}$ из резервуара к стеллажу гидропонной теплицы на высоту ${\rm H_{\scriptscriptstyle \Gamma}}$ осуществляется насосом за время T=15 мин. Трубы стальные, бывшие в эксплуатации. Длина трубопровода от резервуара до насоса $l_{\rm BC}$, диаметр $d_{\rm BC}$; длина и диаметр трубопровода от насоса до стеллажа – $l_{\rm H}$, $d_{\rm H}$. Коэффициенты местных сопротивлений следующие: входа из резервуара в трубу $\xi_{\rm BX}$ =0,5, выхода из трубы в поддон секции $\xi_{\rm Bыx}$ =1,0, поворота трубы $\xi_{\rm пов}$ =0,5.

- 1. Произвести выбор центробежного насоса, начертит его рабочие характеристики H=f(Q), $\eta=f(Q)$.
- 2. Построить характеристику трубопровода для подачи раствора $H_{\text{тр}} = f(Q)$ и определить рабочую точку при работе насоса на сеть.
- 3. Определить мощность на валу насоса, приняв удельный вес раствора γ .

Задача 45. (Рис. 5.5). Центробежный насос перекачивает воду из открытого резервуара A в закрытый цилиндрический резервуар В водонапорной башни на высоту $H_{\rm r}$. Давление на свободной поверхности в баке $p_{\rm o}$ =0,147 Мпа. Трубы всасывания и нагнетания имеют соответственно: диаметры $d_{\rm BC}$, $d_{\rm H}$ и длины $l_{\rm BC}$, $l_{\rm H}$. Коэффициент гидравлического трения λ =0,03. Местными потерями в нагнетательном трубопроводе пренебречь. Суммарный коэффициент местных сопротивлений всасывающей линии $\xi_{\rm BC}$ =6.

- 1. Подобрать насос, который обеспечит подачу воды Q. Построить рабочие характеристики насоса H=f(Q) и $\eta=f(Q)$.
- 2. Построить характеристику трубопровода $H_{\tau p} = f(Q)$. Найти рабочую точку при работе насоса на сеть.
- 3. Найти потребную мощность насоса для пропуска заданного объемного расхода.
- 4. Определить подаваемый объемный расход при параллельной работе двух одинаковых насосов на общий трубопровод с теми же данными. Начертить схему подключения насосов.

Задача 46. (Рис. 5.6). Для подкормки растений из резервуара А питательный раствор удельным весом γ =9,81 $\frac{\kappa H}{M}$ 3 перекачивается в стеллаж В на высоту H_{Γ} центробежным насосом с объемным расходом Q. В узле С часть раствора отводится по ответвлению в резервуар A, где перемешивается через перфорированный трубопровод. Трубопровод всасывания имеет длину $l_{\rm BC}$, диаметр $d_{\rm BC}$. Нагнетательный трубопровод имеет длину до точки $C-l=l_{\rm BC}$, от т. C до стеллажа В и от т. С до

резервуара А – $l_{\rm cB}$ = $l_{\rm ca}$ = 2 $l_{\rm BC}$, диаметр $d_{\rm H}$. Коэффициент сопротивления трения в трубах λ =0,025, суммарный коэффициент местных сопротивлений всасывающей линии $\xi_{\rm BC}$ =4. Местными потерями в линиях нагнетания пренебречь.

- 1. Подобрать насос. Начертить рабочие характеристики H=f(Q) и $\eta=f(Q)$.
 - 2. Определить рабочую точку при работе насоса на сеть.
 - 3. Определить мощность насоса $N_{\rm H}$.
- 4. Как изменится напор и мощность насоса, если подачу воды увеличить на 20%? Как (последовательно или параллельно) надо подключить второй насос с целью увеличения расхода при работе на один трубопровод?

Задача 47. (Рис. 5.7). Из водоисточника в водонапорную башню вода температурой t $^{\circ}$ C перекачивается по стальному трубопроводу центробежным насосом с объемным расходом Q. Отметка уровня воды в источнике - $\nabla_{\text{ис}}$ =27 м, отметка уровня воды в резервуаре водонапорной башни - ∇_{6} =95 м. Всасывающий и нагнетательный трубопроводы имеют соответственно: длины $l_{\text{вс}}$, $l_{\text{н}}$; диаметры $d_{\text{вс}}$, $d_{\text{н}}$. Местными потерями в нагнетательном трубопроводе пренебречь, во всасывающем трубопроводе местные потери напора принять равными 100% от потерь по длине.

- 1. Произвести выбор центробежного насоса. Построить его рабочие характеристики H=f(Q), $\eta=f(Q)$. Построить характеристику трубопровода $H_{\tau p}=f(Q)$ и по рабочей точке насоса проверить его режим работы на трубопровод.
- 2. Определить мощность на валу насоса для рабочей точки насоса. КПД насоса η_H определить по характеристике $\eta = f(Q)$.
- 3. Как изменится напор и мощность насоса, если подачу воды уменьшить задвижкой на 22%?
- 4. Как изменится объемный расход, если параллельно подключить второй насос? Начертить схему подключения насосов.

Задача 48. (рис. 5.8). Из резервуара А животноводческого помещения после биологической очистки сточные воды температурой t $^{\circ}$ C перекачиваются центробежным насосом с объемным расходом Q по стальному трубопроводу в общий резервуар-водосборник В. Перепад горизонтов в резервуаре А и водосборнике В равен Δh =1,5 м. Всасывающий и нагнетательный трубопровод имеют соответственно длины $l_{\rm BC}$, $l_{\rm H}$; диаметры $d_{\rm BC}$, $d_{\rm H}$. Местными гидравлическими потерями пренебречь.

1. Подобрать насос. Начертить рабочие характеристики насоса H=f(Q) и $\eta=f(Q)$, построить характеристику трубопровода $H_{TD}=f(Q)$.

- 2. Определить рабочую точку при работе насоса на сеть и мощность на валу насоса. Коэффициент полезного действия насоса определить по характеристике $\eta = f(Q)$.
- 3. Как изменится напор и мощность насоса при уменьшении задвижкой подачи воды на 25%?
- 4. Как изменится подаваемый объемный расход, если параллельно подключить второй насос на общий трубопровод с теми же данными? Начертить схему подключения насосов.
- Задача 49. (Рис. 5.9). В сливной системе навозоудаления вода для смыва забирается из резервуара-накопителя А центробежным насосом и подается в одинаковом количестве Q в два помещения В и C, которые находятся на высоте $h_{\rm B}$ =4 м, $h_{\rm c}$ =9 м. Трубопровод АК имеет приведенную длину l=50 м, трубы КС и КВ имеют одинаковую длину $l_{\rm KC}$ = $l_{\rm kB}$ = l_2 =100 м, диаметр всех труб равняется $d_{\rm KB}$ = $d_{\rm KC}$ = $d_{\rm AK}$. Коэффициент сопротивления трения во всех трубах λ =0,025. Суммарный коэффициент местных сопротивлений всасывающей линии $\xi_{\rm BC}$ =5.
- 1. Определить, какое дополнительное сопротивление необходимо ввести в трубу КВ путем прикрытия задвижки, чтобы обеспечить требуемое равенство расходов.
- 2. Подобрать центробежный насос, начертить его рабочие характеристики H=f(Q), $\eta=f(Q)$.
- 3. Определить рабочую точку при работе насоса на сеть. Подсчитать мощность на валу насоса.
- 4. Определить подаваемый объемный расход при параллельной работе двух одинаковых насосов на общий трубопровод с теми же данными. Начертить схему подключения насосов.
- **Задача 50.** (Рис. 5.10). Вода температурой t $^{\circ}$ С из водохранилища в оросительную систему подается на высоту H_{Γ} по стальному трубопроводу центробежным насосом с объемным расходом Q. Всасывающий и нагнетательный трубопроводы имеют соответственно: длины $l_{\rm BC}$, $l_{\rm H}$ и диаметры $d_{\rm BC}$, $d_{\rm H}$. Местными потерями в нагнетательном трубопроводе пренебречь, во всасывающем трубопроводе местные потери напора принять равными 100% от потерь по длине.
- 1. Произвести выбор центробежного насоса. Построить рабочие характеристики насоса H=f(Q), $\eta=f(Q)$.
- 2. Построить характеристику трубопровода $H_{rp}=f(Q)$. Определить рабочую точку при работе насоса на сеть.
- 3. Определить мощность на валу насоса для рабочей точки. КПД насоса для расчета определить по характеристике $\eta = f(Q)$.
- 4. Как изменится подаваемый объемный расход при параллельной работе двух одинаковых насосов на общий трубопровод с теми же данными? Начертить схему подключения насосов.

Исходные данные для решения задач 41-50

Таблица 8

Исходные данные				Но	мера	зада	Ч			
	41	42	43	44	45	46	47	48	49	50
Объемный расход воды $Q \times 10^{-2}$, M^3/c	0,98	3,5	0,5	-	2,0	1,5	3,0	0,4	25	4,0
Высота подъема воды H_r , м	20	16	6,7	14	15,6	17	-	-	-	15
Всасывающий трубопровод: длина $l_{\rm Bc}$, м диаметр $d_{\rm Bc}$, м	13 0,13	12 0,15	10 0,06	30 0,25	8 0,20	6 0,15	11 0,15	12 0,08	0,15	150 0,20
Нагнетательный трубопровод: длина $l_{\rm H}$, м диаметр $d_{\rm H}$, м	20 0,10	200 0,125	42 0,05	120 0,20	400 0,15	- 0,10	220 0,10	85 0,05	- 0,10	240 150
Температура воды t°, С	-	20	6	25	-	-	10	16	-	18

Содержание

Раздел 1. (Общие методические указания по изучению дисципл	ины3
Раздел 2.	Содержание учебных модулей дисциплины и методи	ические
указания по их	изучению	7
Раздел 3.	Задания для контрольной работы и методические у	казания
по ее выполнен	ию	11
Приложе	ния	33

приложения

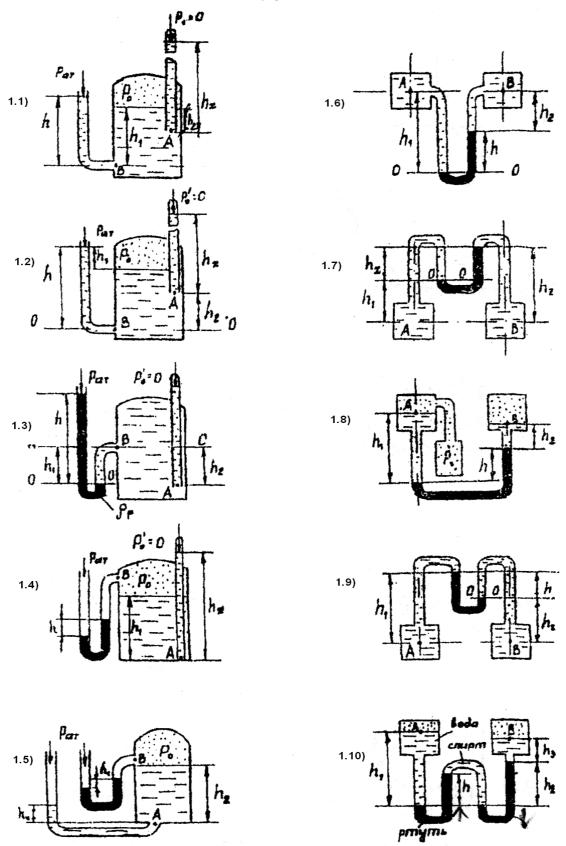


Рисунок 1.1-1.10 Приборы для измерения давления

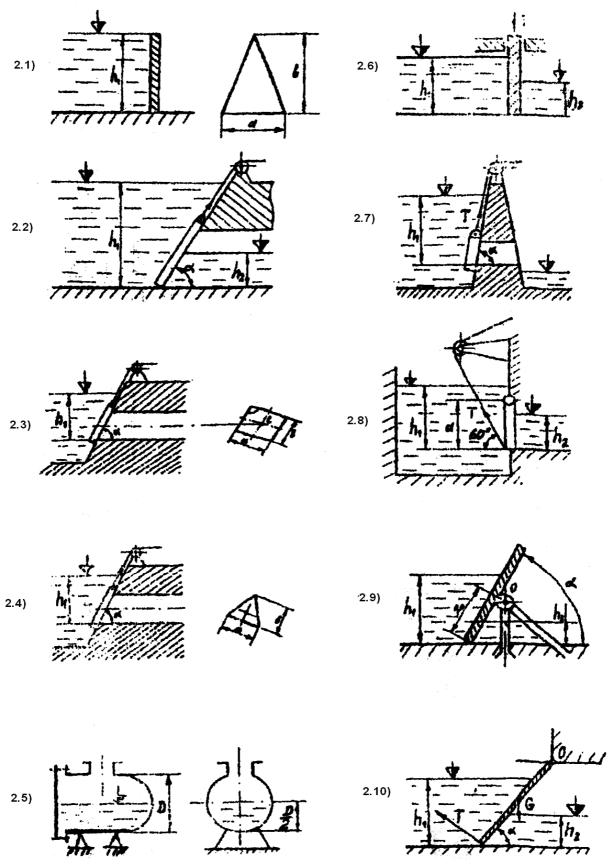


Рисунок 2.1-2.10 Давление на плоскую стенку

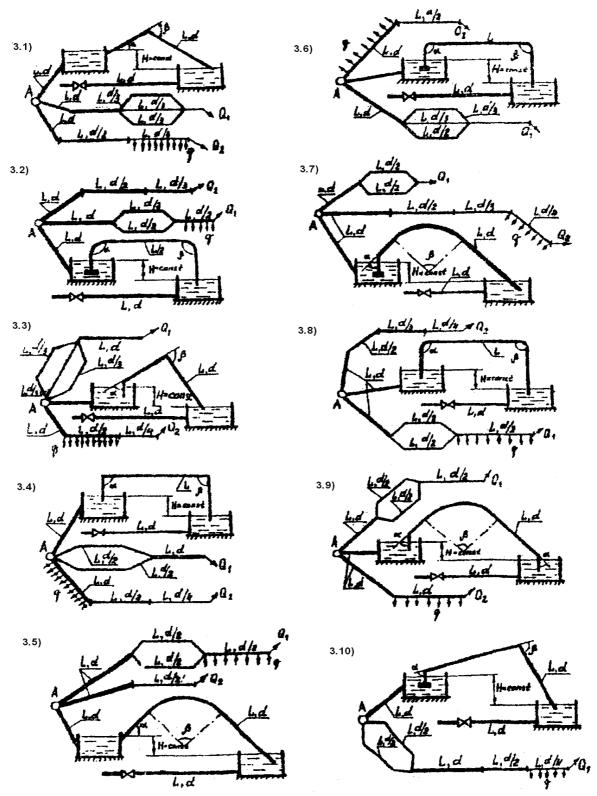


Рисунок 3.1-3.10 Длинные трубопроводы с параллельным и последовательным соединениями. Сифонный трубопровод, гидравлический удар

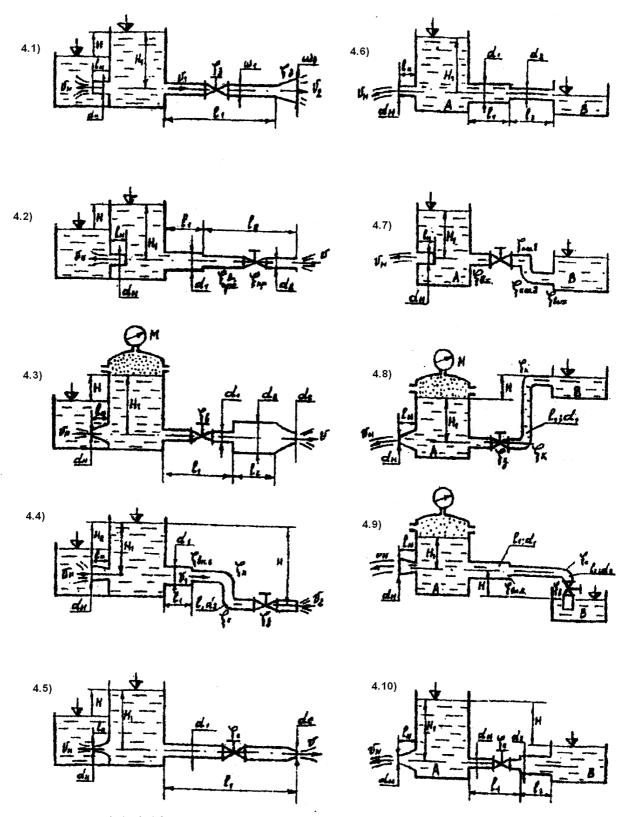


Рисунок 4.1-4.10 Местные сопротивления. Истечение жидкости через отверстия и насадки

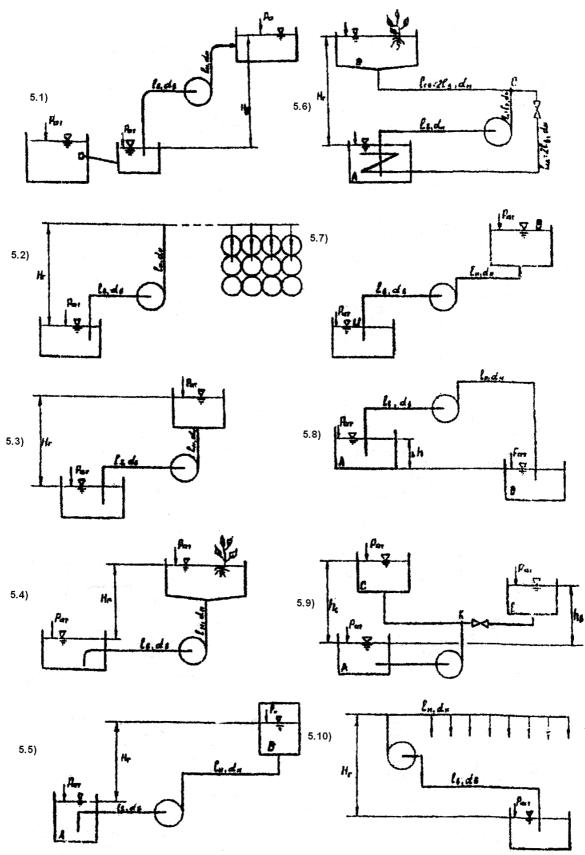
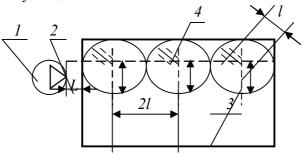



Рисунок 5.1-5.10 Выбор центробежного насоса, проверка его работы на сеть

Задача 57. Произвести расчет водопроводной сети, предназначенной для полива дождевальными машинами «Фрегат» трехпольного участка, занятого под техническими культурами. Каждая из трех машин модификации ДМ-454-50 работает поочередно на двух позициях, имеет ширину захвата l=453,5м, объемный расход Q=50 л/с, напор на гидранте h=50м. Централизованная водоподача к гидрантам осуществляется насосной станцией.

Определить напор насосной станции, если трубы используются стальные, бывшие в эксплуатации, а скорость движения воды по трубам v=1,4 м/с, расстояние от насосной станции до поля L=2 $l=453,5\times2=907$ м, геодезическая высота подъема воды $H_r=7$ м.

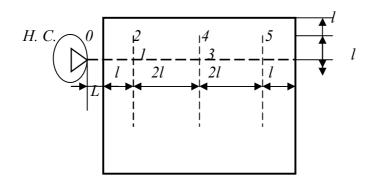
Дано: l=453,5м; Q=50 л/с; h=50м; L=2 l; $H_r=7$ м; v=1,4 м/с; трубы стальные, бывшие в эксплуатации.

Схемы оросительной сети и перемещения дождевальных машин «Фрегат» для полива сельскохозяйственных культур: 1 – насосная станция; 2 – напорный трубопровод; 3 - гидранты; 4 – дождевальная машина «Фрегат».

Решение:

Так как на орошаемых участках работают одновременно три «Фрегата» расходом 50 л/с каждый, то насосная станция будет подавать расход Q=150 л/с.

Определим диаметр трубопровода на разные расходы, формула для расчета следующая:


$$\upsilon = rac{4Q}{\pi d^2}$$
, откуда $d = \sqrt{rac{4Q}{\upsilon \pi}}$ м

$$d = \sqrt{\frac{4 \cdot 0,150}{1,4 \cdot 3,14}} = 0,369 \text{ m} \approx 400 \text{ mm};$$

$$d = \sqrt{\frac{4 \cdot 0,100}{1,4 \cdot 3,14}} = 0,302 \text{ m} \approx 350 \text{ mm};$$

$$d = \sqrt{\frac{4 \cdot 0,050}{1,4 \cdot 3,14}} = 0,213 \text{ m} \approx 250 \text{ mm};$$

Диаметры трубопроводов и соответствующие им длины приведем по расчетным участкам в табл. 1 при определении потерь напора по длине.

Расчетная схема орошаемого участка.

Потери напора по длине определяем по следующей формуле:

$$h_1 = A \cdot K \cdot l \cdot Q^2$$
, м

 Γ де A – удельное сопротивление v = 1,2 м/c;

K — поправочный коэффициент к значениям A, принимается при v < 1,2 м/с, в данном случае коэффициентом K пренебрегаем.

Данные расчета сведем в таблицу.

Таблица 1.

Расчетный	Длина l , м	Pасход Q , м ³ /с	Диаметр d , мм	A	h_I , M
участок					
0 - 1	907	0,150	400	0,1859	3,79
1 - 2	453,5	0,050	250	2,187	2,48
1 - 3	907	0,100	350	0,3731	3,38
3 - 4	453,5	0,050	250	2,187	2,48
3 - 5	1360,5	0,050	250	2,187	7,44

19,57

$$h_{1.0-1} = 0.1859 \cdot 907 \cdot 0.150^2 = 3.79 \text{ M}$$

$$h_{1 \ 1-2} = 2,187 \cdot 453,5 \cdot 0,050^2 = 2,48 \text{ M}$$

$$h_{1 \ 1-3} = 0.3731 \cdot 907 \cdot 0.100^2 = 3.38 \text{ N}$$

$$h_{1\ 3-4} = 2,187 \cdot 453,5 \cdot 0,050^2 = 2,48 \text{ M}$$

$$h_{1-3-5} = 2,187 \cdot 1360,5 \cdot 0,050^2 = 7,44 \text{ M}$$

Местные потери принимаем 10% от потерь напора по длине, тогда суммарные потери будут равны:

$$\sum h = 1.1 \cdot 19.57 = 21.53 \text{ M}.$$

Напор насосной станции определяем по формуле:

Где H_{Γ} – геодезическая высота подъема насосной станции, м; $h_{\Gamma H I}$ - напор на гидранте, м;

Ответ: H_{HC} = 78,53 м водного столба.