# ГОУ ВПО «Ижевский Государственный Технический Университет» Кафедра «Тепловые двигатели и установки»

### Митюков Н.В.

### ГИДРОМАШИНЫ И ГИДРОКОМПРЕССОРЫ

Методические указания к выполнению практических работ для студентов специальности 170200.65 «Машины и оборудование нефтяных и газовых промыслов»

УДК 621.65 + 621.51 М 66 ББК 38.762

Рецензент *Макаров С.С.*, канд. техн. наук, доцент, старш. научн. сотр. ИПМ УрО РАН

Составители: Митюков Н.В., д-р техн. наук, доц.

Рекомендовано к изданию на заседании кафедры «Тепловые двигатели и установки» ИжГТУ

М66 **Гидромашины и гидрокомпрессоры**: Метод. указ. к выполнению практических работ / сост. Н.В. Митюков. – Ижевск: Изд-во ИжГТУ, 2011. – 16 с.

УДК 621.65 + 621.51

В методических указаниях содержатся сведения, необходимые для выполнения практических работ по курсу «Гидравлические машины». Предназначено для студентов специальности 170200.65 «Машины и оборудование нефтяных и газовых промыслов».

- © Митюков Н.В. составление, 2011
- © Ижевский государственный технический университет, 2011

**Задача 1.** Рассчитать рабочее колесо центробежного насоса для подачи воды Q под избыточным давлением  $p_2$ , при давлении входа 10 кПа. Частота вращения ротора насоса n.

| Вариант | $Q,  {\rm M}^3/{\rm H}$ | <i>p</i> <sub>2</sub> , кПа | n,      |
|---------|-------------------------|-----------------------------|---------|
|         |                         |                             | об/мин. |
| 1.      | 150                     | 200                         | 1500    |
| 3.      | 170                     | 200                         | 1500    |
| 5.      | 190                     | 200                         | 1500    |
| 7.      | 210                     | 200                         | 1500    |
| 9.      | 230                     | 200                         | 1500    |
| 11.     | 150                     | 220                         | 1500    |
| 13.     | 170                     | 220                         | 1500    |
| 15.     | 190                     | 220                         | 1500    |
| 17.     | 210                     | 220                         | 1500    |
| 19.     | 230                     | 220                         | 1500    |
| 21.     | 150                     | 250                         | 1500    |
| 23.     | 170                     | 250                         | 1500    |
| 25.     | 190                     | 250                         | 1500    |
| 27.     | 210                     | 250                         | 1500    |
| 29.     | 230                     | 250                         | 1500    |

|         | 3.                | _           |         |
|---------|-------------------|-------------|---------|
| Вариант | $Q$ , м $^{3}$ /ч | $p_2$ , кПа | n,      |
|         |                   |             | об/мин. |
| 2.      | 150               | 200         | 1000    |
| 4.      | 170               | 200         | 1000    |
| 6.      | 190               | 200         | 1000    |
| 8.      | 210               | 200         | 1000    |
| 10.     | 230               | 200         | 1000    |
| 12.     | 150               | 220         | 1000    |
| 14.     | 170               | 220         | 1000    |
| 16.     | 190               | 220         | 1000    |
| 18.     | 210               | 220         | 1000    |
| 20.     | 230               | 220         | 1000    |
| 22.     | 150               | 250         | 1000    |
| 24.     | 170               | 250         | 1000    |
| 26.     | 190               | 250         | 1000    |
| 28.     | 210               | 250         | 1000    |
| 30.     | 230               | 250         | 1000    |

### Порядок расчета центробежного насоса

1. Рассчитывается создаваемый напор:

$$H = \frac{p_2 - p_1}{\rho g},$$

где  $p_2$  и  $p_1$  – соответственно давление выхода и входа в насос, Па;  $\rho$  – плотность жидкости, текущей по насосу, кг/м³; g – ускорение свободного падения, м/с².

2. Определение коэффициента быстроходности:

$$n_s = 3,65 \frac{n\sqrt{Q}}{H^{0,75}},$$

где n — число оборотов ротора насоса, об/мин; Q — производительность, м $^3$ /с; H — создаваемый напор, м.

3. Определение объемного КПД:

$$\eta_{o} = \frac{1}{1 + a \cdot n_{s}^{-0.66}},$$

где a — отношение выходного и входного диаметров насоса (для первого приближения можно принять a = 0,65...0,70).

У крупных центробежных насосов величина объемного КПД при тщательном изготовлении составляет 0,96...0,98, у мелких и средних – 0,85...0,95.

4. Определение гидравлического КПД:

$$\eta_{\Gamma} = 1 - \frac{0.42}{\left(\ln D_{\ln} - 0.172\right)^2},$$

где  $D_{1\pi}$  – условный диаметр живого сечения входа в рабочее колесо, называемый также приведенным диаметром входа:  $D_{1\pi} = \sqrt{D_0^2 - d_{\rm cr}^2}$ ;  $D_0$  – диаметр входа в колесо, м;  $d_{\rm cr}$  – диаметр ступицы, м.

При проектировочных расчетах существует статистическая зависимость для определения приведенного диаметра, где Q – в  $\rm m^3/c$ , а n – в об/мин:

$$D_{1\pi} \approx 4,25\sqrt[3]{Q/n} ,$$

У насосов хорошего изготовления значения гидравлического КПД лежат в пределах 0,85...0,96. Мелкие насосы с плохой обработкой внутренних поверхностей имеют КПД в диапазоне 0,80...0,85.

- 5. Механический КПД крупных центробежных насосов лежит в диапазоне 0,92...0,96.
  - 6. Определение полного КПД насоса:

$$\eta = \eta_o \; \eta_\Gamma \; \eta_{\scriptscriptstyle M}.$$

7. Определение мощности на валу:

$$N = \frac{\rho Q g H}{\eta}.$$

8. Определение крутящего момента на валу:

$$M = \frac{30 N}{\pi n}.$$

9. Определение диаметра вала:

$$d_{\rm\scriptscriptstyle B} = \sqrt[3]{\frac{M}{0,2[\tau]}}\,,$$

где  $[\tau]$  — допустимое напряжение кручения на валу. Для инженерных расчетов стального вала можно принять  $[\tau]$  = 1,2...2,0 кH/cm<sup>2</sup>.

10. Определение параметров колеса по конструктивно-компоновочным соображениям.

Диаметра ступицы колеса:  $d_{\rm ct} = (1,1...1,4)\ d_{\rm B}$ . При чем, диаметр ступицы верхней границы диапазона характерен для тихоходных насосов, нижняя граница — для быстроходных с оборотами порядка несколько десятков тысяч оборотов в минуту. В первом приближении можно принять диаметр входа в колесо примерно равный приведенному диаметру входа ( $D_0 \approx D_{\rm ln}$ ). Для вынесения входной кромки рабочей лопатки из зоны поворота потока рекомендуется увеличить диаметр входа на лопасти на 20 мм по сравнению с диаметром входа в колесо. Рекомендуется по мере получения проектных размеров начать вычерчивание конструкции рабочего колеса. По конструктивно-компоновочным соображениям рекомендуется принимать длину ступицы  $l_{\rm ct} = (1,0...1,5)\ d_{\rm ct}$ .

11. Построение треугольника скоростей на входе. Окружная скорость потока на входе:

$$u_1 = \frac{\pi D_1 n}{60}.$$

Абсолютную скорость потока на входе можно принять равной абсолютной скорости входа в рабочее колесо:

$$c_1 = c_0 = \frac{4Q}{\eta_0 \pi D_1^2}.$$

Тогда угол входа потока определится как:

$$\beta_1 = \operatorname{arctg} \frac{c_1}{u_1}.$$

Лопастной угол  $\beta_{1\pi}$  можно определить через угол входа потока:  $\beta_1$ :

$$\beta_{1\pi} = \beta_1 + i,$$

где i — угол атаки, оптимальное значение которого для лопастей, загнутых назад составляет  $3^{\circ}...5^{\circ}$ .

12. Определение ширины лопасти на входе:

$$b_1 = \frac{Q}{\eta_o \pi D_1 c_1 \mu_1},$$

где  $\mu_1$  — коэффициент заполнения сечения активным потоком, обычно составляющим значения 0,85...0,95.

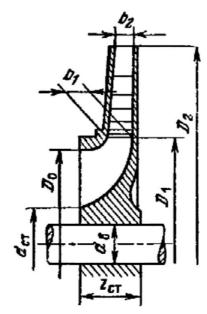
13. Определение диаметра выхода.

Окружная скорость на выходе: 
$$u_2 = \frac{c}{2}\operatorname{ctg}\beta_2 + \sqrt{\left(\frac{c \cdot \operatorname{ctg}\beta_2}{2}\right)^2 + \frac{gH}{\eta_{\scriptscriptstyle \Gamma}}}$$
,

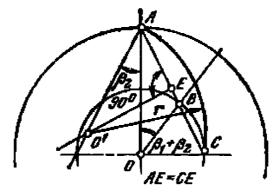
откуда диаметр выхода:  $D_2 = \frac{60u_2}{\pi n}$ .

Если ошибка в отношении диаметров составляет менее 10%, то результаты расчетов можно принять как окончательные, при превышении ошибки 10% необходимо провести второе приближение и вернуться к пункту 3.

14. Ширина лопасти на выходе можно определить из условия постоянства абсолютной скорости:


$$b_2 = b_1 a$$
.

15. Определение количества лопаток рабочего колеса по формуле Пфлейдерера:


$$z = 6.5 \frac{1+a}{1-a} \sin \frac{\beta_{1\pi} + \beta_{2\pi}}{2},$$

в которой угол отставания потока на выходе можно приять равным 1°...3°.

16. Вычерчивание конструктивно-компоновочной схемы центробежного насоса.



17. Построение профиля лопатки и вычерчивание вида сбоку.



Для этого необходимо от центра вращения ротора насоса O отложить диаметры  $D_1$  и  $D_2$ . Далее из точки O откладывается угол  $\beta_1 + \beta_2$  и находится точка B. После чего соединяя точки B и C находится точка A. Далее расстоя-

ние AC делится пополам и находится точка E, из которой проводится перпендикуляр к отрезку AC. Из точки A следует отложить угол  $\beta_2$ , найдя таким образом центр кривизны лопатки O'. Соединяя точки A и C из центра O' радиусом r строится профиль лопатки. Для наглядности строим профили двух соседних лопаток. Для определения расстояния между лопатками следует разделить угол  $360^{\circ}$  на количество лопаток z.

#### Пример. Исходные данные:

| $Q$ , м $^3$ /ч | <i>p</i> <sub>2</sub> , кПа | <i>n</i> , об/мин. |
|-----------------|-----------------------------|--------------------|
| 180             | 200                         | 1430               |

1. Создаваемый напор: 
$$H = \frac{200000 - 10000}{1000 \cdot 9,8} = 19,38 \,\mathrm{M}.$$

2. Коэффициент быстроходности:

$$n_s = 3,65 \frac{1430\sqrt{0,05}}{19,38^{0,75}} = 125$$
, т.о. это нормальный насос.

3. Для первого приближения принимаем отношения диаметров входа и выхода a = 0.68, тогда:

$$\eta_o = \frac{1}{1 + 0.68 \cdot 125^{-0.66}} = 0.97$$
.

4. Приведенный диаметр:

$$D_{1\pi} \approx 4,25\sqrt[3]{\frac{0,05}{1430}} = 0,14$$
 м, тогда гидравлический КПД:

$$\eta_{\rm r} = 1 - \frac{0.42}{\left(\ln 0.14 - 0.172\right)^2} = 0.91.$$

- 5. Принимаем механический КПД  $\eta_{\text{м}} = 0.93$ .
- 6. Полный КПД насоса:  $\eta = 0.97 \ 0.91 \ 0.93 = 0.82$ .

7. Мощность на валу: 
$$N = \frac{1000 \cdot 0,05 \cdot 9,8 \cdot 19,38}{0,82} = 12 \,\mathrm{кBt}.$$

8. Крутящий момент: 
$$M = \frac{30 \cdot 12000}{\pi \cdot 1430} = 80,2$$
 H м.

9. Диаметр вала: 
$$d_{\scriptscriptstyle \rm B} = \sqrt[3]{\frac{8020}{0.2 \cdot 1500}} = 3 \, {\rm cm} = 30 \, {\rm mm}.$$

10. Диаметр ступицы:  $d_{\rm cr}=1,4\cdot 30=41$  мм. Диаметр входа на рабочие лопасти:  $D_1=140+20=164$  мм.

По конструктивным соображениям принимает  $l_{cr} = 1,4 \cdot 42 = 59$  мм.

11. Окружная скорость на входе: 
$$u_1 = \frac{\pi \cdot 0,160 \cdot 1430}{60} = 12$$
 м/с.

Абсолютная скорость на входе: 
$$c_1 = \frac{4 \cdot 0.05}{0.97 \cdot \pi \cdot 0.164^2} = 2.4$$
 м/с.

Угол входа потока: 
$$\beta_1 = \arctan\left(\frac{2,4}{12}\right) = 11^\circ$$
.

Угол лопасти на входе:  $\beta_{1\pi} = 11^{\circ} + 4^{\circ} = 15^{\circ}$ . Угол потока на выходе принимаем равным  $\beta_2 = 17^{\circ}$ .

12. Ширина лопасти на входе:

$$b_1 = \frac{0.05}{0.97 \cdot \pi \cdot 0.164 \cdot 2.4 \cdot 0.9} = 0.046 \text{ M} = 46 \text{ MM}.$$

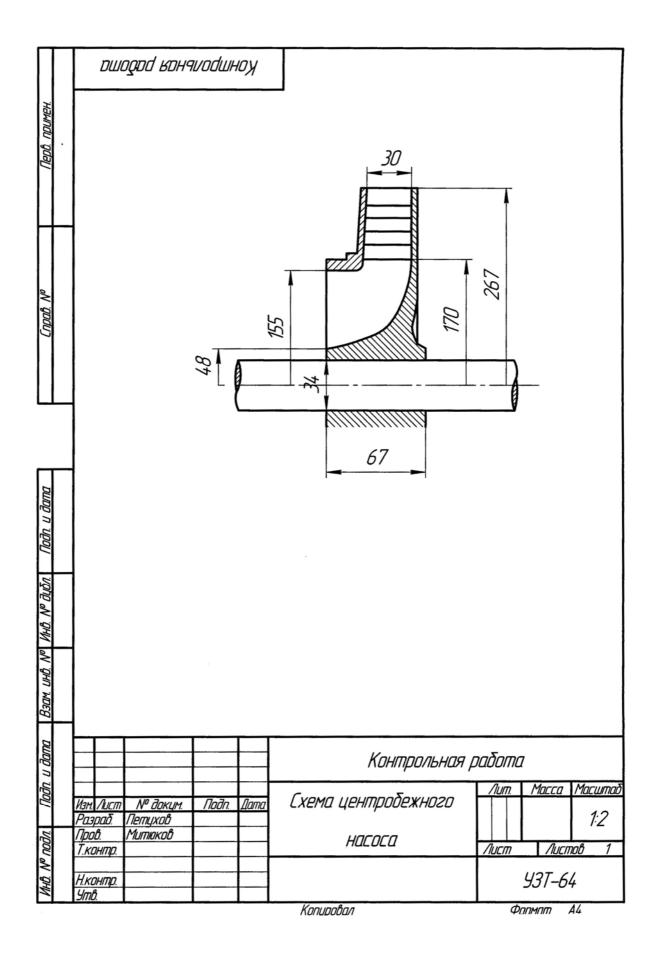
13. Окружная скорость на выходе:

$$u_2 = \frac{2.4}{2} \text{ ctg} 17^\circ + \sqrt{\left(\frac{2.4 \cdot \text{ctg} 17^\circ}{2}\right)^2 + \frac{9.8 \cdot 19.38}{0.91}} = 19 \text{ m/c}.$$

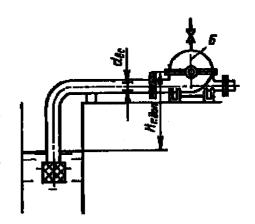
Диаметр выхода: 
$$D_2 = \frac{60 \cdot 19}{\pi \cdot 1430} = 0.254 \text{ м}.$$

Таким образом, отношение диаметров входа и выхода составляет:

$$a = 0.164/0.254 = 0.645,$$


и расхождение с первым приближением:  $\frac{0,68-0,645}{0,68} = 6\%$ . Расхождение составляет не более 10%, но для оценки изменения величин произведем второе приближение.

Результаты второго приближения:


$$η_0 = 0.97; D_{1π} = 0.14 \text{ m}; η_Γ = 0.91; η = 0.82; N = 11.6 \text{ kBt}; M = 80.4 \text{ H m}; d_B = 29.6 \text{ mm}; d_{ct} = 41.4 \text{ mm}; D_1 = 164 \text{ mm}; u_1 = 12.2 \text{ m/c}; c_1 = 2.4 \text{ m/c}; β_1 = 11°; β_{1π} = 15°; b_1 = 46 \text{ mm}; u_2 = 19 \text{ m/c}; D_2 = 254 \text{ mm}; a = 0.645.$$

14. Ширина лопасти на выходе:  $b_2 = 46 \cdot 0,645 = 30$  мм.

15. Количество лопаток: 
$$z = 6.5 \frac{1 + 0.645}{1 - 0.645} \sin \frac{15 + (15 + 2)}{2} = 8.4$$
, следовательно колесо имеет 8 лопаток.



Задача 2. Для варианта, рассмотренного в задаче 1, определить допустимую геометрическую высоту расположения насоса над уровнем всасываемой воды из условия бескавитационной работы. Диаметр всасывающего патрубка  $d_{\rm BC}=500$  мм, абсолютное давление на поверхности воды  $p_{\rm д}=100$  кПа, температура воды  $T_{\rm вод}=293$  К, суммарные потери напора во всасывающей трубе  $h_{\rm BC}=0.25$ .



1. По таблицам насыщенного водяного пара находим давление насыщения при  $T_{\text{вод}}$  = 293 К:  $p_{\text{нас}}$  = 2,34 кПа.

2. Кавитационный запас: 
$$H_{\text{\tiny KAB}} = \frac{p_{\scriptscriptstyle \rm A} - p_{\scriptscriptstyle \rm HAC}}{\rho g} = \frac{100000 - 2340}{1000 \cdot 9,81} = 9,9 \text{ м.}$$

3. Критическая высота всасывания:

$$H_{\text{вс.кр}} = H_{\text{кав}} - 10 \cdot \left(\frac{n\sqrt{Q}}{C}\right)^{\frac{4}{3}}$$
, где  $n-$ в об/мин,  $Q-$ в м $^{3}$ /с,  $C-$  кавитационный

коэффициент быстроходности (коэффициент С.С. Руднева), для начальной стадии кавитации C = 900...1500.

$$H_{\text{BC.Kp}} = 9.9 - 10 \cdot \left(\frac{1430\sqrt{0.05}}{1100}\right)^{\frac{4}{3}} = 8.0 \text{ M}.$$

4. Допустимая высота всасывания:

$$H_{\text{вс.доп}} = H_{\text{вс.кр}} - 0.25 (H_{\text{кав}} - H_{\text{вс.кр}}) = 8.0 - 0.25 (9.9 - 8.0) = 7.5 \text{ м}.$$

5. Скорость во всасывающем патрубке: 
$$c_{\rm BC} = \frac{4Q}{\pi d_{\rm BC}^2} = \frac{4 \cdot 0.05}{\pi \cdot 0.5^2} = 0.255$$
 м/с.

6. Допустимая геометрическая высота всасывания:

$$H_{\text{\tiny \Gamma,ДОП}} = H_{\text{\tiny BC,ДОП}} - h_{\text{\tiny BC}} - \frac{c_{\text{\tiny BC}}^2}{2g} - \frac{D_{\text{\tiny I}}}{2} = 7,5 - 0,25 - \frac{0,255^2}{2 \cdot 9.81} - \frac{0,164}{2} = 7,1 \text{ M}.$$

**Задача 3.** Определить основные размеры двухпоршневого насоса двухстороннего действия с подачей Q, найти напор и мощность при работе насоса на сеть, характеристика которой выражена уравнением  $H = H_{\rm cr} + a \ Q^2$ . Насос приводится в движение через клиноременную и зубчатую передачу от электродвигателя с частотой вращения n.

| Вариант | $Q$ , м $^3$ /ч | $H_{\mathrm{cr}}$ , м | $a, y^2/M^5$ | <i>n</i> , об/мин. |
|---------|-----------------|-----------------------|--------------|--------------------|
| 1.      | 1,00            | 50                    | 6,0          | 1500               |
| 2.      | 1,25            | 50                    | 6,0          | 1500               |
| 3.      | 1,50            | 50                    | 6,0          | 1500               |
| 4.      | 1,75            | 50                    | 6,0          | 1500               |
| 5.      | 2,00            | 50                    | 6,0          | 1500               |
| 6.      | 1,00            | 50                    | 7,0          | 1500               |
| 7.      | 1,25            | 50                    | 7,0          | 1500               |
| 8.      | 1,50            | 50                    | 7,0          | 1500               |
| 9.      | 1,75            | 50                    | 7,0          | 1500               |
| 10.     | 2,00            | 50                    | 7,0          | 1500               |
| 11.     | 1,00            | 40                    | 6,0          | 1500               |
| 12.     | 1,25            | 40                    | 6,0          | 1500               |
| 13.     | 1,50            | 40                    | 6,0          | 1500               |
| 14.     | 1,75            | 40                    | 6,0          | 1500               |
| 15.     | 2,00            | 40                    | 6,0          | 1500               |
| 16.     | 1,00            | 40                    | 7,0          | 1000               |
| 17.     | 1,25            | 40                    | 7,0          | 1000               |
| 18.     | 1,50            | 40                    | 7,0          | 1000               |
| 19.     | 1,75            | 40                    | 7,0          | 1000               |
| 20.     | 2,00            | 40                    | 7,0          | 1000               |
| 21.     | 1,00            | 30                    | 6,0          | 1000               |
| 22.     | 1,25            | 30                    | 6,0          | 1000               |
| 23.     | 1,50            | 30                    | 6,0          | 1000               |
| 24.     | 1,75            | 30                    | 6,0          | 1000               |
| 25.     | 2,00            | 30                    | 6,0          | 1000               |
| 26.     | 1,00            | 30                    | 7,0          | 1000               |
| 27.     | 1,25            | 30                    | 7,0          | 1000               |
| 28.     | 1,50            | 30                    | 7,0          | 1000               |
| 29.     | 1,75            | 30                    | 7,0          | 1000               |
| 30.     | 2,00            | 30                    | 7,0          | 1000               |

## Порядок расчета поршневого насоса.

1. Определение подачи Q' на один цилиндр: Q' = Q / z, где z – число поршней.

### 2. Выбор проектных параметров насоса.

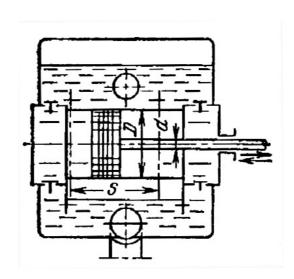
Отношение хода поршня к диаметру поршня S/D. Обычно чем больше число двойных ходов, тем меньше S/D. Для насосов, выпускаемых в СССР и России S/D принимается равным 0,8...2,0. По условиям прочности штока диаметр штока d можно принять от диаметра поршня как:  $D^2/d^2=10$ . Средняя скорость поршня  $\nu_{\scriptscriptstyle \Pi}$  из условия равномерности подачи может быть принята равной 0,6 м/с.

3. Определение значения диаметра поршня из уравнения подачи:

$$Q' = \frac{\pi}{4} \left( 2D^2 - d^2 \right) nS\eta_0,$$

где n — частота вращения вала насоса;  $\eta_0$  — объемный КПД.

Необходимая частота вращения вала насоса  $n = \frac{30v_n}{S}$ , а объемный КПД обычно составляет 0,70...0,97.


- 4. Определение передаточного отношение редуктора:  $i = n_{\text{дв}} / n$ .
- 5. Определение напора из условия устойчивой работы в сети (по характеристике сети).
  - 6. Определение мощности насоса:

$$N = \frac{\rho QgH}{\eta \eta_{\Pi}}$$
,

где  $\rho$  — плотность текущей в насосе жидкости;  $\eta$  — полный КПД насоса;  $\eta_{\pi}$  — КПД привода ( $\eta_{\pi}$  = 0,92...0,95).

Полный КПД насоса определяется как:  $\eta = \eta_{\Gamma} \eta_{o} \eta_{M}$ , где гидравлический КПД обычно составляет  $\eta_{\Gamma} = 0.80...0.94$ ; объемный КПД  $\eta_{o} = 0.70...0.97$ ; механический КПД  $\eta_{M} = 0.90...0.95$ . Отсюда  $\eta = 0.65...0.85$ .

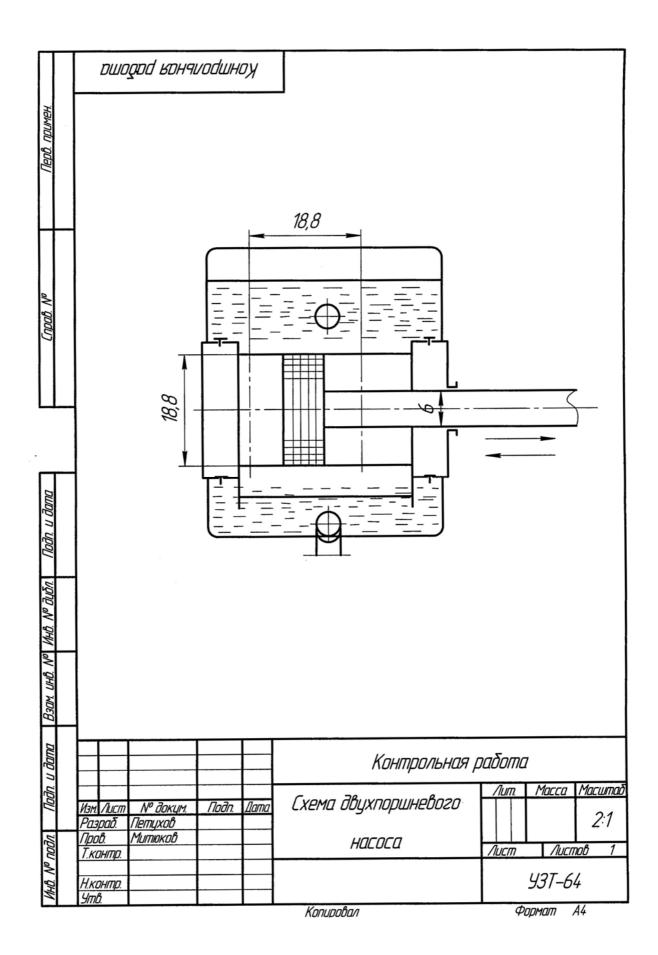
7. Вычерчивание конструктивно-компоновочной схемы двухпоршневого насоса.



Пример. Исходные данные:

| $Q$ , $M^3/H$ | $H_{\rm ct}$ , m | $a,  y^2/M^5$ | <i>n</i> , об/мин. |
|---------------|------------------|---------------|--------------------|
| 1,25          | 40               | 6,4           | 960                |

- 1. Подача на один цилиндр: Q' = 1,25 / 2 = 0,625.
- 2. Выбор проектных параметров насоса.  $S\!/D=1$ , как для относительно быстроходного насоса.  $D^2/d^2=10, \, v_{\scriptscriptstyle \Pi}=0,6$  м/с.


3. Необходимая частота вращения вала насоса: n = 18 / D. Объемный КПД принимаем равным 0,92. В этом случае уравнение подачи запишется:

$$Q' = \left(2\frac{\pi}{4}D^2 - 0.1\frac{\pi}{4}D^2\right)\frac{18}{D}D0.92 = 1.9\frac{\pi}{4}D^2 \cdot 18 \cdot 0.92 = 24.7D^2.$$

Отсюда 
$$D = \sqrt{\frac{0,625}{24,7}} = 0,159 \,\mathrm{m}; \ S = 0,159 \,\mathrm{m}; \ n = 18/0,159 = 113 \,$$
 об/мин;  $d = 0,159\sqrt{0,1} = 0,05 \,$  м.

- 4. Передаточное отношение редуктора: i = 960/113 = 8,5.
- 5. Определение напора насоса:  $H = 40 + 6,4 \cdot 1,25^2 = 50$  м.
- 6. Принимая  $\eta = 0.82$ , а  $\eta_{\pi} = 0.94$ , получаем:

$$N = \frac{1000 \cdot 0,00035 \cdot 9,81 \cdot 50}{0,82 \cdot 0,94} = 223 \text{ Bt.}$$



### Список рекомендуемой литературы

- 1. Поляков В.В., Скворцов Л.С. Насосы и вентиляторы: Уч. для вузов. М.: Стройиздат, 1990. 336 с.
- 2. *Черкасский В.М.* Насосы, вентиляторы и компрессоры: Уч. для вузов. М.: Энергоатомиздат, 1984. 416 с.
- 3. Шлипченко 3.С. Насосы, компрессоры и вентиляторы. Киев: Изд-во «Техніка», 1976. 368 с.

Подписано в печать сентябрь 2007 г. Формат  $60\times84/16$ . Печать офсетная. Гарнитура «Таймс». Усл. печ. л. 0,698. Уч.-изд. л. 0,234. Заказ № \_\_\_\_