Понятие о неклассических логиках

Исчисление высказываний и исчисление предикатов первого порядка называют аристотелевской или классической логикой. В отличие от классической логики существует целый ряд других логик, которые называют неклассическими. Причиной появления неклассических логик является существование большого количества проблем, для моделирования и решения которых недостаточно формализма классической логики. Несмотря на большое количество неклассических логик, их делят на два класса: первый класс включает логики, которые рассматриваются как расширения классической логики, а другой класс — как альтернативы классической логике.

К первому классу относят модальную логику и ее разновидности: *темпо-ральную*, динамическую и другие логики, а ко второму — многозначную, частичную, нечеткую и интуиционистскую логики.

Рассмотрим некоторые из них. Начнем с многозначных логик и среди них подробнее остановимся на трёхзначной логике L_3 Лукасевича (Лукашевича).

Многозначная логика — тип формальной логики, для которого характерно наличие трёх и более истинностных значений (*истинности* и *ложности*).

Пусть $k \ge 2$, $E_k = \{0, 1, ..., k-1\}$.

Определение. Функция $f(x_1, \dots, x_n)$ называется функцией k-значной логики, или k-значной функцией, если

$$f: E_k^n \to E_k$$
, где $n \ge 1$.

Множество всех функций k-значной логики обозначим как P_k , множество всех функций k-значной логики, зависящих от переменных x1, ..., xn, обозначим как P_k (n).

При k = 2 функции называются также **булевыми функциями** или функциями алгебры логики или логическими функциями, а при $k \ge 3$ — **функциями многозначной логики**, или **многозначными функциями**.

Равенство функций k-значной логики (при k≥2) рассматривается с точностью до несущественных (фиктивных) переменных.

Первая система многозначной логики, которую мы рассмотрим, — это **троичная логика,** предложенная польским математиком Яном Лукасевичем в 1920 году.

- **Лукасевич** (Łukasiewicz) Ян (21.12.1878, Львов, 13.11.1956, Дублин), польский логик,
- Построил первую систему многозначной логики, а с её помощью систему *модальной логики*.
- Разработал оригинальный язык для формализации логических и математических выражений (бесскобочная символика Лукасевича).

Троичная логика (трёхзначная, тройная, англ. ternary logic)

Данная логика использует три истинностных значения: ИСТИНА, ЛОЖЬ и НЕОПРЕДЕЛЁННОТЬ (НЕЙТРАЛЬНОСТЬ, НЕИЗВЕСТНОСТЬ). Для обозначения

этих значений в литературе используются такие наборы знаков:

	1 11	•	
ложь	неопределённость	истина	комментарий
0	1/2	1	авторский набор
			Лукасевича
0	1	2	
-	0	+	
-1	0	+1	
Л	Н	И	
N	Z	P	

Классический пример состояний такой логики — множества $\{>,<,=\}$ или $\{>,<,=\}$ — это значения, которые могут быть, например, результатом сравнения двух объектов.

Применялась при разработке троичной малой ЭВМ «Сетунь», которая была разработана в 1959 г. на ВЦ МГУ и выпускалась серийно на казанском машиностроительном заводе. К 1965 г. было выпущено 46 ЭВМ, из них 30 поступили в университеты.

Определение. Троичной функцией от п переменных называется отображение:

f:
$$T^n \rightarrow T$$
, где $T = \{0,1,2\}$.

Сравним с двоичной функцией:

f:
$$\mathbf{B}^{\mathbf{n}}$$
 → \mathbf{B} , где \mathbf{B} ={0,1}.

В настоящее время \exists -ют разные варианты троичных логик: в них по-разному вводится понятие отрицания. Это логики Лукасевича, Поста, Бочвара, Гейтинга и др.

Троичные операции

Рассмотрим следующие "элементарные" функции трёхзначной логики.

- 1. Нуль-местные (константы): 0,1,2
- 2. Одноместные. Тождественная функция х и отрицания:
 - а) -x = 2 x отрицание Лукасевича «зеркальное» отражение х
 - b) $\overline{x} = x + 1 \ (mod \ 3)$ отрицание Поста «циклическое отрицание», т.е. циклический сдвиг значений
 - c) $-x = 3 x \pmod{3}$ минус х

Приведём их таблицы истинности:

X	~X	\overline{x}	-X
0	2	1	0
1	1	2	2
2	0	0	1

Всего существует $3^{3^1} = 27$ одноместных троичных функций.

3. Характеристические функции выделенного значения – первого и второго рода.

Характеристическая функция 1-го рода:

$$j_m(x) = \left\{ \begin{array}{ll} 1, & \text{если } x = m \\ 0, & \text{если } x \neq m \end{array} \right.$$

Характеристическая функция 2-го рода:

$$J_m(x) = \left\{ egin{array}{ll} 2, & ext{если } x = m \\ 0, & ext{если } x
et m \end{array} \right.$$

4. Двухместные функции

1) импликация

$$x \rightarrow y = \left\{ egin{array}{ll} 2, & & \text{если } x \leq y \\ 2 - (x - y), & & \text{если } x > y \end{array} \right.$$

- **2) конъюнкция (минимум):** $x \wedge y = min(x,y)$
- **3)** дизьюнкция (максимум): $x \lor y = max(x,y)$
- **4) сложение (по модулю 3):** х⊕у (mod 3)
- 5) разность (по модулю 3):

$$x - y \pmod{3} = \begin{cases} x - y, & \text{если } x \ge y \\ 3 - (y - x), & \text{если } x < y \end{cases}$$

- **6) умножение (по модулю 3):** х·у (mod 3)
- 7) усечённая разность

$$x - y = \begin{cases} x - y, & \text{если } x \ge y \\ 0, & \text{если } x < y \end{cases}$$

8) функция Вебба: $V_3(x,y) = \max(x,y) + 1 \pmod{3}$

В следующей таблице приведены значения указанных выше элементарных функций.

				, ,			(10)		
X	У	$x \rightarrow y$	min(x, y)	max(x, y)	$x + y \pmod{3}$	x - y	xy(mod 3)	x - y	$V_3(x, y)$
0	0	2	0	0	0	0	0	0	1
0	1	2	0	1	1	2	0	0	2
0	2	2	0	2	2	1	0	0	0
1	0	1	0	1	1	1	0	1	2
1	1	2	1	1	2	0	1	0	2
1	2	2	1	2	0	2	2	0	0
2	0	0	0	2	2	2	0	2	0
2	1	1	1	2	0	1	2	1	0
2	2	2	2	2	1	0	1	0	0

Функции алгебры логики обобщаются на функции трёхзначной логики следующим образом:

n	\mathbf{P}_2	P_3	пояснения
n = 0	0, 1	0, 1, 2	константы
n = 1	X	X	тождественная функция
	\overline{x}	\overline{x} , ~ x	отрицания
n = 2	x∧y	min(x, y)	конъюнкция / минимум
	$x \vee y$	max(x, y)	дизъюнкция / максимум
	$x \oplus y$	$x + y \pmod{k}$	сложение по модулю k
	$x \rightarrow y$	x → y	импликация

Характеристические функции $j_m(x)$ и $J_m(x)$ являются аналогами функции x^{σ} в P_2 . Функция Вебба – аналог штриха Шеффера.

Элементарные функции -x, x - y не имеют явного прообраза в двузначном случае.

Определение формулы в L_3 аналогично определению формулы в P_2 .

Определение равносильности. Формулы F и G называются равносильными (эквивалентными), если они задают (реализуют) равные функции. Записывается равносильность: F=G.

В трёхзначной логике выполняются следующие законы.

Доказываются они либо с помощью таблиц истинности либо путём перебора всех значений входящих в них переменных либо с использованием уже доказанных законов.

1. Коммутативность

$$x \land y = y \land x = min(x, y)$$

 $x \lor y = y \lor x = max(x, y)$

2. Ассоциативность

$$x \land (y \land z) = (x \land y) \land z$$
, T.e. $\min(x, \min(y, z)) = \min((\min(x, y), z))$
 $x \lor (y \lor z) = (x \lor y) \lor z$, T.e. $\max(x, \max(y, z)) = \max((\max(x, y), z))$

3. Дистрибутивность

$$x \land (y \lor z) = (x \land y) \lor (y \land z), \quad \text{t.e.} \quad \min(x, \max(y, z)) = \max(\min(x, y), \min(x, z))$$

 $x \lor (y \land z) = (x \lor y) \land (y \lor z), \quad \text{t.e.} \quad \max(x, \min(y, z)) = \min(\max(x, y), \max(x, z))$

Докажем, например, дистрибутивность дизъюнкции относительно конъюнкции. Для этого рассмотрим всевозможные отношения между x,y,z:

a)
$$x \le y \le z \implies x \lor (y \land z) = \max(x, \min(y, z)) = \max(x, y) = y;$$

$$(x \land y) \lor (y \land z) = \min(\max(x, y), \max(x, z)) = \min(y, z) = y$$

6)
$$x \le z \le y \implies x \lor (y \land z) = \max(x, \min(y, z)) = \max(x, z) = z$$

$$(x \land y) \lor (y \land z) = \min(\max(x,y), \max(x,z)) = \min(y,z) = z$$

и т.д. – всего 6 случаев.

4. Идемпотентность

$$x \wedge x = x$$
, T.e. $min(x,x) = x$
 $x \vee x = x$, T.e. $max(x,x) = x$

5. ~(~х)=х - закон двойного отрицания Лукасевича

$$\frac{\pm}{x} = x$$
 — закон тройного отрицания Поста

6. Свойства констант

$$\mathbf{x} \wedge 2 = \mathbf{x}; \quad \mathbf{x} \wedge 0 = 0$$

$$x \lor 2 = 2$$
: $x \lor 0 = x$

7. Неизменность третьего состояния (1) при отрицании Лукасевича:

~1=1, T.K.
$$\sim$$
1=2−1=1

$$\sim (x \land 1) = \sim x \lor 1$$
, r.e. 2- $\min(x,1) = \max(2-x,1)$

Для док-ва надо рассмотреть 3 случая:

a)
$$x<1 \implies 2-\min(x,1) = 2-x = \max(2-x,1)$$

б)
$$x=1 \Rightarrow 2-\min(x,1) = 2-1=1=\max(2-x,1)=\max(1,1)$$

B)
$$x>1 \Rightarrow 2-\min(x,1) = 2-1=1=\max(2-x,1)=1$$

8. Буквальное определение отрицания Поста (циклического отрицания)

$$\overline{0} = 0 + 1 = 1$$

$$\overline{1} = 1 + 1 = 2$$

$$\overline{2} = 2 + 1 \pmod{3} = 0$$

9. Законы де Моргана

$$\sim$$
(x \wedge y)= \sim x \vee \sim y, r.e. \sim min(x,y) = max(\sim x, \sim y)

$$\sim$$
(x \vee y)= \sim x \wedge \sim y, r.e. \sim max(x,y) = min(\sim x, \sim y)

Докажем, например, первый закон. Возможны 3 случая:

a)
$$x < y \implies -\min(x,y) = 2 - \min(x,y) = 2 - x = \max(2 - x, 2 - y) = \max(-x, -y)$$

6)
$$x=y \Rightarrow -\min(x,y) = 2-\min(x,y) = 2-x = \max(2-x, 2-y) = \max(-x,-y)$$

B)
$$x>y \implies -\min(x,y) = 2 - \min(x,y) = 2 - y = \max(2-x, 2-y) = \max(-x, -y)$$

В трёхзначной логике не соблюдаются законы исключённого третього и противоречия (ПРОВЕРИТЬ!)

Важным свойством трёхзначных логик, отражающим их адекватность, есть то, что все они являются расширениями классической двузначной логики.

Рассмотрим примеры доказательства эквивалентности формул для произвольного k.

Примеры.

1. Докажем тождество: $-(\bar{x}) = \sim x$.

$$-(\bar{x}) = -(x+1) = (k-1) - x = \sim x.$$

2. Докажем тождество: $\sim \max(\sim x, \sim y) = \min(x, y)$.

$$\sim \max(\sim x, \sim y) =$$

$$= (k-1) - \begin{cases} (k-1) - x, & (k-1) - x \ge (k-1) - y; \\ (k-1) - y, & (k-1) - x < (k-1) - y; \end{cases} =$$

$$= \begin{cases} x, & x \le y; \\ y, & x > y; \end{cases} = \min(x, y).$$

<u>Преимущества троичной системы счисления перед двоичной и</u> проблемы реализации

Основные преимущества троичной логики перед двоичной:

- троичная система счисления (CC) позволяет вмещать больший диапазон чисел в памяти троичного компьютера, поскольку $3^n > 2^n$.
- троичная СС использует меньше разрядов для записи чисел, по сравнению с двоичной СС. Например:

$$1110101_2 = 111100_3$$

 $1000_2 = 22_3$

• компьютер, основанный на троичной логике, обладает большим быстродействием. Например, троичный сумматор и полусумматор в троичном компьютере при сложении тритов выполняет примерно в 1,5 раза меньше операций сложения по сравнению с двоичным компьютером.

Практические реализации

Говоря о будущем таких машин, как «Сетунь» (то есть троичных компьютеров), известный американский учёный Дональд Кнут, отмечал, что они занимают очень мало место в отрасли вычислительной техники из-за массового засильея двоичных компонентов, производимых в огромных количествах. Но, поскольку троичная логика гораздо эффективнее двоичной, не исключено, что в недалёком будущем к ней вернутся.

В настоящее время особо благоприятное влияние на развитие троичной логики оказала разработка квантовых компьютеров, работающих на основе квантовой механики и принципиально отличающихся от классических компьютеров, работающих на основе классической механики. Полноценный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных

экспериментов. Эта работа лежит на переднем крае современной физики. Согласно некоторым исследованиям, компьютер, который в обычном случае использовал бы **50 традиционных квантовых вентилей**, сможет обойтись всего **девятью** – если будет основан на троичном представлении.

Перейдём теперь к рассмотрению функций к-значной логики.

Функции к-значной логики

Пусть $E=\{0,1,2,\ldots,k-1\}$ и $f(x_1,x_2,\ldots,x_n)-k$ -значная функция, т.е. её аргументы и она сама принимают значения из E.

Рассмотрим «элементарные» функции k-значной логики.

- **1. Константы:** 0,1,2, ..., k-1.
- 2. Тождественная функция х.
- 3. Функции, являющиеся обобщением отрицания в Р2:
 - а) $\sim x = (k 1) x$ отрицание Лукасевича «зеркальное» отражение x
 - b) $\overline{x} = x + 1 \pmod{k}$ отрицание Поста «циклическое отрицание»
 - c) $-x = 3-x \pmod{k}$ минус x

X	X	X	$\sim x$	-x
0	0	1	k-1	0
1	1	2	k-2	k-1
k-2	k-2	k-1	1	2
k-1	k-1	0	0	1

4. Характеристические функции 1-го рода $j_m(x)$ и 2-го рода $I_m(x)$, m=0,1,..., k-1.

$$j_m(x) = \left\{ \begin{array}{ll} 1, & \text{если } x = m \\ 0, & \text{если } x \neq m \end{array} \right.$$

$$J_m(x) = \left\{ egin{array}{ll} k-1, & ext{ если } x=m \ 0, & ext{ если } x
et m \end{array}
ight.$$

- **5. Функции** min(x,y) **и** $x \cdot y \pmod{k}$. Эти функции являются обобщением конъюнкции. Функция min(x,y) обозначается также $x \wedge y$ или x & y.
- **6. Функции тах(х,у)** аналог дизъюнкции в P_2 . Она обозначается также х \vee у.
- 7. Импликация

$$x \rightarrow y = \begin{cases} k-1, & \text{если } x \leq y \\ (k-1)-(x-y), & \text{если } x > y \end{cases}$$

- **8.** Сложение (по модулю k): $x \oplus y \pmod{k}$
- 9. Разность (по модулю к):

x - y (mod k) =
$$\begin{cases} x - y, & \text{если } x \ge y \\ k - (y - x), & \text{если } x < y \end{cases}$$

10. Функция Вебба:
$$V_k(x,y) = \max(x,y) + 1 \pmod{k}$$

Пример. Найдём вектор значений функции $f(x) \in P_5$, которая задаётся формулой:

$$\sim (3x^2)$$

Искомая функции записана в самом правом столбце.

X	\mathbf{x}^2	$3x^2$	$\sim 3x^2$
0	0	0	4
1	1	3	1
2	4	2	2
3	4	2	2
4	1	3	1

Аналогично троичной логике можно проверить ряд важных свойств функций из P_k .

Нормальные формы. 1-я и 2-я формы функции

Данные представления являются аналогами совершенной дизъюнктивной нормальной формы в P_2 .

Теорема 1 (о 1-й форме).

Пусть $k \ge 2$. Каждая функция $f(x_1,...,x_n) \in P_k$ k-значной логики может быть задана формулой следующего вида:

$$f(x_1,\ldots,x_n)=\max_{(\sigma_1,\ldots,\sigma_n)\in E_k^n}\min\left(J_{\sigma_1}(x_1),\ldots,J_{\sigma_n}(x_n),f(\sigma_1,\ldots,\sigma_n)\right).$$

Доказательство.

Рассмотрим произвольный набор $lpha=(a_1,\ldots,a_n)\in E_k^n$. Тогда

$$f(a_1, \dots, a_n) = \max_{(\sigma_1, \dots, \sigma_n) \in E_k^n} \min (J_{\sigma_1}(a_1), \dots, J_{\sigma_n}(a_n), f(\sigma_1, \dots, \sigma_n)) =$$

$$= \max(0, \dots, 0, f(a_1, \dots, a_n), 0, \dots, 0) = f(a_1, \dots, a_n).$$

Пример.

Пусть
$$f(x) = \bar{x} \in P_3$$
:

Найдём её 1-ю форму:

$$f(x) = \max(\min(J_0(x), f(0)), \min(J_1(x), f(1)), \min(J_2(x), f(2))) =$$

$$= \max(\min(J_0(x), 1), \min(J_1(x), 2), \min(J_2(x), 0)) =$$

$$= \max(\min(J_0(x), 1), J_1(x)).$$

Теорема 2 (о 2-й форме).

Пусть $k \ge 2$. Каждая функция $f(x_1,...,x_n) \in P_k$ k-значной логики может быть задана формулой следующего вида:

$$f(x_1,\ldots,x_n)=\sum_{(\sigma_1,\ldots,\sigma_n)\in E_k^n}j_{\sigma_1}(x_1)\cdot\ldots\cdot j_{\sigma_n}(x_n)\cdot f(\sigma_1,\ldots,\sigma_n).$$

Пример. Пусть $g(x) = J_2(x + x^2) \in P_4$:

X	x^2	$x + x^2$	g
0	0	0	0
1	1	2	3
2	0	2	3
3	1	0	0

Найдем ее 2-ю форму:

$$g(x) = j_0(x) \cdot g(0) + j_1(x) \cdot g(1) + j_2(x) \cdot g(2) + j_3(x) \cdot g(3) =$$

$$= j_0(x) \cdot 0 + j_1(x) \cdot 3 + j_2(x) \cdot 3 + j_3(x) \cdot 0 = 3j_1(x) + 3j_2(x).$$

Представление функций полиномами

Мономом назовем формулу вида

$$X_{i_1}^{s_1} \cdot \ldots \cdot X_{i_r}^{s_r}$$

где все переменные различны, $r \ge 1$, и $s_1, \ldots, s_r \ge 1$, или константу 1.

Полиномом по модулю к назовем формулу вида

$$c_1K_1 + \ldots + c_p K_p$$
,

где K_i — различные мономы и $c_i \in E_k \setminus \{0\}$ — ненулевые коэффициенты, $i=1,\,\ldots\,,$ р, или константу 0.

Теорема 3 (о представлении функций к-значной логики полиномами).

Пусть $k \ge 2$. Каждая функция $f(x_1,...,x_n) \in P_k$ k-значной логики может быть задана полиномом по модулю k тогда и только тогда, когда k – простое число.

Доказательство.

Пусть $f(x_1,...,x_n) \in P_k$. Запишем ее во 2-й форме:

$$f(x_1,\ldots,x_n)=\sum_{(\sigma_1,\ldots,\sigma_n)\in E_k^n}j_{\sigma_1}(x_1)\cdot\ldots\cdot j_{\sigma_n}(x_n)\cdot f(\sigma_1,\ldots,\sigma_n).$$

Заметим, что $j_{\sigma}(x) = j_{0}(x - \sigma)$. Тогда

$$f(x_1,\ldots,x_n)=\sum_{(\sigma_1,\ldots,\sigma_n)\in E_k^n}j_0(x_1-\sigma_1)\cdot\ldots\cdot j_0(x_n-\sigma_n)\cdot f(\sigma_1,\ldots,\sigma_n).$$

1. Если k — простое число, то по малой теореме Ферма $a^{k-1}=1 (\bmod k)$ при $1 \leq a \leq k-1$. Тогда $j_0(x)=1-x^{k-1}$ и

$$f(x_1,\ldots,x_n) =$$

$$= \sum_{(\sigma_1,\ldots,\sigma_n)\in E_k^n} (1-(x_1-\sigma_1)^{k-1})\cdot\ldots\cdot(1-(x_n-\sigma_n)^{k-1})\cdot f(\sigma_1,\ldots,\sigma_n).$$

Затем перемножаем скобки по свойствам дистрибутивности, коммутативности, ассоциативности и приводим подобные слагаемые. Получаем полином по модулю k для функции $f(x_1, \ldots, x_n)$.

Существование полинома по модулю k для каждой k-значной функции при простых k доказано.

2. Пусть k — составное число. Тогда $k = k_1 \cdot k_2$, где $k_1 \geq k_2 > 1$. Докажем от противного, что в этом случае функция $j_0(x)$ не задается полиномом по модулю k.

Пусть функция $j_0(x)$ задается полиномом по модулю k:

$$j_0(x) = c_s x^s + c_{s-1} x^{s-1} + \ldots + c_1 x + c_0,$$

 $c_s, c_{s-1}, \dots, c_1, c_0 \in E_k$ — коэффициенты, $c_s \neq 0$. Тогда

$$j_0(0)=c_0=1$$
;

$$j_0(k_2) = c_s k_2^s + c_{s-1} k_2^{s-1} + \ldots + c_1 k_2 + 1 = 0.$$

Отсюда

$$k_2 \cdot (c_s k_2^{s-1} + c_{s-1} k_2^{s-2} + \ldots + c_1) = k - 1 \pmod{k}.$$

Т.к. число k_2 — делитель числа k, число k-1 обязано делиться на $k_2 > 1$ — противоречие.

T.e. при составных k никакой полином по модулю k не задает функцию $j_0(x)$.

Определение. Функция $f(x1,...,xn) \in P_k$ называется **полиномиальной**, если она задается полиномом по модулю k.

Следующие элементарные функции являются полиномиальными при всех значениях k и при простых, и при составных:

$$x;$$
 $\bar{x} = x + 1;$
 $\sim x = (k - 1) - x = (k - 1)x + (k - 1);$
 $-x = k - x = (k - 1)x;$
 $x + y;$
 $x - y = x + (k - 1)y;$
 $x \cdot y;$
 x^m

Элементарные функции:

$$j_i(x), i \in E_k;$$

 $J_i(x), i \in E_k;$
 $\max(x,y);$
 $\min(x,y);$
 $x - y;$
 $x \rightarrow y$

являются полиномиальными при простых k и **не являются полиномиальными** при всех составных k.

Множество всех k-значных функций, задающихся полиномами по модулю k, обозначается как Pol_k

Следствие.

Если k простое число, то $Pol_k = P_k$; если k составное число, то $Pol_k \neq P_k$.

Вопросы:

- Как строить полиномы для k-значных функций при простых k?
- Как выяснить, задается ли полиномом заданная k-значная функция, если k составное число?

Способы построения полиномов к-значных функций при простых к:

- 1) способ из доказательства теоремы 4 по 2-й форме;
- 2) метод неопределенных коэффициентов.

Если k составное число, то можно применять **метод неопределенных коэффициентов** для выяснения, задается ли данная k-значная функция полиномом по модулю k.

Рассмотрим примеры.

ПРИМЕР 1. Пусть
$$f(x) = J_1(x) + J_2(x) \in P_4$$
.

Выясним, задается ли функция $f(x) \in P_4$ полиномом по модулю 4 методом неопределенных коэффициентов.

Предположим, что функция f (x) задается полиномом по модулю 4.

Сначала построим таблицу степеней x^s :

X	\mathbf{x}^2	\mathbf{x}^3	x^4
0	0	0	0
1	1	1	1
2	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	1 0 3	1
2 3	1	3	1

Так как $x^4 = x^2$, то степени в полиноме по модулю 4 можно записывать только до третьей.

Пусть

$$f(x) = ax^3 + bx^2 + cx + d,$$

где a, b, c, $d \in E_4$ – неизвестные коэффициенты.

Для определения коэффициентов составим систему уравнений по значениям данной функции $f(x) = J_1(x) + J_2(x) \in P_4$:

$$f(0) = d = 0;$$

$$f(1) = a + b + c + d = 3;$$

$$f(2) = 2c + d = 3;$$

$$f(3) = 3a + b + 3c + d = 0.$$

Из первого и третьего уравнения получаем:

$$2c = 3$$
:

Подставляя все возможные значения $c \in E_4$, выясняем, что это равенство не выполняется ни при каких значениях $c \in E_4$:

$$2.0=0$$
; $2.1=1$; $2.2=0$; $2.3=2$.

Следовательно, исходная система не имеет решений (по модулю 4), откуда

$$f(x) = J_1(x) + J_2(x) \notin Pol_4$$
.

ПРИМЕР 2. Пусть
$$g(x) = 2(J_1(x) + J_2(x)) \in P_4$$
.

Выясним, задается ли функция $g(x) \in P_4$ полиномом по модулю 4 методом неопределенных коэффициентов.

Пусть

$$g(x) = ax^3 + bx^2 + cx + d,$$

где a, b, c, $d \in E_4$ – неизвестные коэффициенты.

Составляем систему уравнений:

$$g(0) = d = 0;$$

$$g(1) = a + b + c + d = 2;$$

$$g(2) = 2c + d = 2;$$

$$g(3) = 3a + b + 3c + d = 0.$$

Из первого и третьего уравнений получаем:

$$2c = 2$$
; $c = 1$.

Тогда

$$a + b = 1;$$

$$3a + b = 1$$
.

Отсюда

$$a = 0$$
; $b = 1$.

Следовательно, функция g(x) задается полиномом по модулю 4, и один из ее полиномов по модулю 4 найден:

$$g(x) = 2(J_1(x) + J_2(x)) = x^2 + x \in Pol_4.$$

Задачи

- 1. При всех $k \geq 2$ доказать тождества:
 - 1) $x \to y = \sim (x y);$ 2) $\min(x, y) = x (x y);$
 - 3) $x y = x \min(x, y)$; 4) $x y = \max(x, y) y$.
- **2**. Записать функцию $f \in P_k$ в 1-й и 2-й формах, если
 - 1) $f(x) = \min(x^2, x^3)$, k = 5; 2) $f(x) = (\sim x)^2 3 \cdot x$, k = 4;
 - 3) $f(x,y) = \min(x,y)$, k = 3; 4) $f(x,y) = 2 \cdot x \cdot y^2$, k = 4.
- **3**. Записать функцию $f \in P_k$ полиномом по модулю k, если

 - 1) $f(x) = J_2(x) + 3J_4(x)$, k = 5; 2) $f(x) = \max(2x, 3x)$, k = 5; 3) $f(x, y) = \min(x^2, y^2)$, k = 3; 4) f(x, y) = x y, k = 3.
- 4. Задается ли функция $f \in P_k$ полиномом по модулю k, если

 - 1) $f(x) = \min(x^2, x^3)$, k = 6; 2) $f(x) = 2 \cdot j_0(x)$, k = 4; 3) $f(x, y) = 5J_2(x) + y^3$, k = 16; 4) $f(x, y) = \min(x^2, y^2)$, k = 4?