Задание 3 (Динамика)

«Динамическое исследование движения системы с одной степенью свободы»

Механическая система состоит из четырех цилиндров, связанных между собой нерастяжимыми тросами (Рис.8.2). Каток 1 массы $m_1=4m$ радиуса $r_1=\frac{3}{2}r$ катится без скольжения по неподвижной плоскости, наклоненной под углом $\alpha=30^\circ$ к горизонту. Блоки 2 и 3 — одинаковые сплошные однородные сдвоенные цилиндры массы $m_2=m_3=20m$ с внутренним радиусом $r_2=r_3=r$ и наружным радиусом $R_2=R_3=2r$. Даны радиусы инерции цилиндров

$$\rho_2^2 = \rho_3^2 = \frac{3}{2}r^2.$$

Величины m и r считаются заданными.

Система приводится в движение из состояния покоя моментом M(t), приложенным к катку 1.

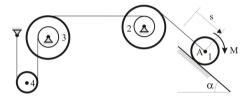


Рис. 8.2

- 1. Используя общие теоремы динамики, составить систему уравнений, описывающих движение заданной механической системы. Исключая из этой системы уравнений внутренние силы, получить дифференциальное уравнение, служащее для определения зависимости s(t) координаты точки A от времени дифференциальное уравнение движения системы.
- 2. Получить то же самое дифференциальное уравнение движения системы, используя теорему об изменении кинетической энергии в дифференциальной форме.
- 3. Получить дифференциальное уравнение движения механической системы на основании общего уравнения динамики.
- 4. Получить то же самое дифференциальное уравнение движения системы, составив для нее уравнения Лагранжа 2-го рода.
- 5. Убедившись в совпадении результатов, полученных четырьмя независимыми способами, проинтегрировать дифференциальное уравнение движения системы, получив зависимость s(t) координаты точки A от времени.
 - 7. Определить натяжения тросов в начальный момент времени (при t = 0).

			,
№	Схема соединения тел 1 и 2	Схема соединения тел 3 и 4	Вращающий момент
1	к телу 3	$r_4 = r$ $m_4 = 4m$	$M = M_o \frac{t+2}{t+1}$
2	<u>к телу 3</u> 2 Д	к телу 2 $r_4 = r$ $m_4 = 4m$	$M = M_o \left(1 + e^{-t} \right)$
3	к телу 3 2 Д	$r_4 = \frac{3}{2}r$ $m_4 = 9m$	$M = M_o \frac{(t+1)^2 + 1}{(t+1)^2}$
4	<u>к телу 3</u> 2 Д 1 о А М	$r_4 = \frac{3}{2}r$ $m_4 = 9m$	$M = M_o \left[1 + \frac{1}{\left(t+1\right)^2} \right]$
5	к телу 3	$r_4 = \frac{3}{2}r$ $m_4 = 9m$	
6	к телу 3		•